DENSITY MODIFICATION REDEVELOPMENT OF 204 AND 228 STRAFFORD AVENUE DEVELOPMENT IMPACT STATEMENT

FOR SUBMISSION TO: RADNOR TOWNSHIP, DELAWARE COUNTY, PA

PREPARED FOR:

Trustees of the Dorrance Hamilton 3/15/1996 Revocable Agreement of Trust c/o Mr. D. Charles Houder 40 Morris Avenue, Suite 150 Bryn Mawr, PA 19010

COMPILED BY:

George W. Broseman, Esquire Kaplin Stewart Meloff Reiter & Stein 910 Harvest Drive P.O. Box 3037 Blue Bell, PA 19422

Dated: May 24, 2023

I. INTRODUCTION

This Development Impact Statement is being submitted in connection with the Conditional Use application for the redevelopment of the properties now known as 204 and 228 Strafford Avenue and 18 Forrest Lane¹ (collectively "**Tract**"). The Tract includes Delaware County Folio Numbers: 36-01-00538-00; 36-01-00539-00; 36-01-00540-00; and 36-01-00236-02.

The Applicant has filed with the Township a conditional use application under Code § 280-29.B(1) for Density Modification Development to permit the construction of thirty-eight townhomes and related improvements (collectively "**Project**").

The Tract and the Project are shown on the plan set entitled "204 & 228 Strafford Avenue Conditional Use Plan Set," containing fourteen (14) sheets dated (sheets 1-9 prepared by SITE Engineering Concepts, LLC, sheets 10-14 prepared by Glackin Thomas Panzak) (collectively referred to as "Plans").

This Development Impact Statement addresses the applicable Development Impact Statement requirements for a conditional use application under Radnor Township Code § 280-135.G as follows (responses to Code requirements in italics):

II. CODE §280-135.G.(1) & (2) -DEVELOPMENT IMPACT STATEMENT

Code §280-135.G.(1)

Comprehensive Plan

(A) An analysis of the consistency of the proposed use with the Radnor Township Comprehensive Plan, as amended. The analysis shall include, but not be limited to, the compatibility with environmental and natural resources; housing, demographics, and socioeconomics; business and economic development; transportation and circulation plan; open space and recreation; historical and archaeological resources; community services and facilities; and the land use plan sections of the Comprehensive Plan.

Under Pennsylvania law a township's Comprehensive Plan is not regulatory. "A comprehensive plan is not forever binding, nor does it actually regulate land use." Michaels Dev. Co. v. Benzinger Twp. Bd. of Sup'rs, 413 A.2d 743, 747 (1980). "A comprehensive plan is, by nature, abstract and recommendatory and does not forever control a zoning ordinance enacted to give it legal effect." Appeal of Molnar, 441 A.2d 487, 489 (1982). "The comprehensive plan is a general guideline to the legislative body of the municipality for its consideration of the municipality's program of land utilization and the needs and desires of the community." Forks Twp. Bd. of Sup'rs v. George Calantoni & Sons, Inc., 297 A.2d 164, 166–67 (1972). Additionally, when a particular use is permitted by conditional use, there is a legislative acceptance that the use is consistent with the zoning plan and is thus consistent with the spirit, purposes, and intent of a Township's Comprehensive Plan. In re Cutler Grp., Inc., 880 A.2d 39, 45 (Pa. Commw. Ct. 2005)

¹ 18 Forrest is being shown for informational purposes only. It is not included in the zoning calculations. The property owner is providing easements for utilities

The Project is permitted by conditional use under Code § 280-29.B(1) as a Density Modification Development and therefore, there exists a legislative determination that Density Modification Developments, such as this Project, are consistent with the spirit, purpose and intent of the Township's Comprehensive Plan.

The following is an analysis of the Project under the Radnor Township Comprehensive Plan for the sections enumerated in Code $\S280-135$. G(1)(a):

i. Environmental and Natural Resources:

The Properties do not contain any water resources, wetlands, floodplains or riparian areas. The Comprehensive Plan advises to direct development to areas of minimum environmental sensitivity, such as the Tract. (Radnor Comprehensive Plan pgs. ii, 2-1). Furthermore, the Tract currently has no stormwater management controls. The Project would provide stormwater management controls in furtherance of the Township's desire to promote the management of water resources. (Radnor Comprehensive Plan pgs. ii, 2-1).

ii. Housing, Demographics, and Socioeconomics:

The Comprehensive Plan includes the Township's goals to "allow for increased housing density immediately surrounding commercial areas and particularly near transit centers" and to "promote conservation development strategies for new development on large parcels." (Radnor Comprehensive Plan pgs. vi, 3-1). The proposed Project is located in close proximity to the commercial corridor along Lancaster Avenue and the Strafford Station along the SEPTA Paoli/Thorndale Regional Rail Line and promotes conservation development strategies by clustering development, providing common open space and providing for stormwater management.

iii. Business and Economic Development:

The zoning of the Tract does not allow for commercial use. The Project is located in close proximity to the commercial corridor along Lancaster Avenue and will serve as a transitional development from the commercial area along Lancaster Avenue and along Eagle Road to the residential areas northward from Lancaster Avenue. The Project will provide an expanded customer base for these commercial uses along Lancaster Avenue, such as the Lancaster Farmer's market in the Strafford Shopping Center and the various shops and restaurants in the adjoining Eagle Village Shops. The Tract is within walking distance of these businesses and will allow visits from the Project without adding traffic.

iv. Transportation and Circulation Plan:

The Project's close proximity to the Strafford Station SEPTA Regional Rail Station will encourage new residents to use this public transit station, which furthers the goals of the Comprehensive Plan. (Radnor Comprehensive Plan pgs. x, 5-2). For additional information regarding traffic related to the Project, a Traffic Impact Study prepared by Frank Tavani, P.E., PTOE was submitted with the Conditional Use application. The Project will also improve pedestrian circulation by constructing sidewalks on the exterior and interior of the Project tract. (Radnor Comprehensive Plan pgs. x, 5-2).

v. Open Space and Recreation:

The Project proposes common open space in a centralized green area for the use of the residents. These areas will be restricted from further development through a Planned Community Declaration.

vi. Historical and Archaeological Resources:

The Property contains no historical or archaeological resources.

vii. Community Services and Facilities:

An analysis of the Project's impact on community services and facilities can be found in the Fiscal Impact Study prepared by Erik Hetzel, AICP/PP, LEED AP that was submitted with the Conditional Use application and is attached to this report as Appendix A.

viii. Land Use Plan:

One of the stated goals of the Comprehensive Plan is to "accommodate reasonable growth using innovative growth management techniques such as transit-oriented development, traditional neighborhood design, and other flexible design techniques that harmonize with and enhance the existing communities." (Radnor Comprehensive Plan pgs. xxv, 10-1, 10-2). The Project utilizes the flexible design technique of density modification development as permitted in the R-4 District in Article XIX of the Zoning Ordinance. The use of this provision allows for a layout that includes common open space that would not be required under a conventional development under the R-4 District provisions.

Furthermore, the Project is located in close proximity to the commercial corridor along Lancaster Avenue and the Strafford Rail Station and will provide an expanded customer base for the commercial uses.

Natural Features

(B) The impact of the proposed use on floodplains, waterways, heavily wooded areas, steep slopes, and other sensitive natural features located upon and adjacent to the site, if any.

There are no floodplains, waterways, heavily wooded areas, or steep slopes on the site. The Project is located in a fully developed area of Radnor Township, surrounded by other residential and commercial development.

Transportation

(C) The proposed use's impact on the Township and regional transportation system(s) and the ability of adjacent streets and intersections to efficiently and safely handle the traffic generated by the proposed development. This analysis shall include all modes of transportation and shall be based on current Pennsylvania Department of Transportation (PennDOT) requirements within their Policies and Procedures for Transportation Impact Studies (PennDOT Strike-off Letter 470-

09-4, dated 2009, as amended). The applicant shall address any measures proposed to be implemented in order to mitigate any adverse impacts.

A Traffic Impact Study prepared by Frank Tavani, P.E., PTOE was submitted with the Conditional Use application and is attached to this report as **Appendix B**. This Traffic Impact Study addresses the Project's impact on the Township's transportation systems including the surrounding streets and intersections. Additionally, the Project's close proximity to the Strafford Rail Station and commercial uses within walkable distance will reduce traffic and will encourage new residents to use this public transit station.

It is also noted that traffic concerns are not a basis for a denial of a conditional use application. Even evidence of a significant increase in traffic does not warrant denial of a conditional use application unless it is shown that the potential for a substantial increase would "by a high degree of probability, pose a substantial threat to the health and safety of the community" that is not typically expected from a similar development. In re Brickstone Realty Corp., 789 A.2d 333, 341 (Pa. Commw. Ct. 2001).

School District

(D) The proposed use's impact on the Radnor School District, including an estimate of new pupils generated by the proposed development.

A Fiscal Impact Study prepared by Erik Hetzel, AICP/PP, LEED AP was submitted with the Conditional Use application and is attached to this report as **Appendix A**. This Fiscal Impact Study addresses the proposed use's impact on the Radnor School District. By way of further response, it is anticipated that an estimated eight (8) school-aged children will live in the proposed development, although all of them may not utilize the Radnor School District's public schools.

Because the conditional use is contemplated and permitted by the ordinance, there is a presumption that the governing body considered the effect of the use when enacting the ordinance and determined that the use is consistent with the health, safety, and welfare of the community so long as it meets the objective requirements of the ordinance. Marr Dev. Mifflinville, LLC v. Mifflin Twp. Zoning Hearing Bd., 166 A.3d 479, 483 (Pa. Commw. Ct. 2017). Whether or not a proposed development adds school children to the local school district is not a factor that can be considered in the review of a conditional use application or a land development application.

Commercial Impact

(E) The proposed use's impact on nearby commercial facilities within the Township and surrounding municipalities.

A Fiscal Impact Study prepared by Erik Hetzel, AICP/PP, LEED AP was submitted with the Conditional Use application and is attached to this report as **Appendix A**. This Fiscal Impact Study addresses the proposed use's economic impacts. By way of further response, the new residents of the proposed development will use goods and services in and around Radnor Township which will have a positive impact on nearby commercial facilities.

Public Utilities

(F) The proposed use's impact on public utilities, including but not limited to sewage disposal, water supply, storm drainage, and electrical utilities.

It should be noted that the Tract and the immediate area is currently served by public utilities and the proposed density is permitted under Article XIX of the Zoning Ordinance, therefore these impacts are already considered under the Zoning Ordinance. No adverse impacts on public utilities are anticipated.

Police and Fire Protection

(G) The proposed use's impact upon the provision of police and fire protection.

A Fiscal Impact Study prepared by Erik Hetzel, AICP/PP, LEED AP was submitted with the Conditional Use application and is attached to this report as Appendix A. This Fiscal Impact Study addresses the proposed use's impact on public safety services. It should be noted that the Tract is currently served by the police and fire department and the proposed density is permitted under Article XIX of the Zoning Ordinance, therefore, these impacts are already considered under the Zoning Ordinance. The eventual homeowners of the Project will also pay taxes to Radnor Township which will increase Township revenues.

Open Space and Recreation Facilities

(H) The proposed use's impact on the Township's open space and recreation facilities.

The Conditional Use Plans propose to designate at least 25% of the Tact as common open space. This proposed common open space will be preserved through the recordation of the approved plan and through a Planned Community Declaration. The proposed density is permitted under Article XIX of the Zoning Ordinance; therefore these impacts are already considered under the Zoning Ordinance. The Radnor Township Subdivision and Land Development Ordinance also requires recreational land dedication or that the Applicant pay a fee-in-lieu to address impacts on the Township's open space and recreation facilities.

Neighborhood Impact

(I) The proposed use's impact upon the character of the surrounding neighborhood. The applicant must show the proposed development will not adversely affect the surrounding neighborhood and what measures are proposed to mitigate any potential impacts.

The site is located in the R-4 Residence District and is in close proximity to one of the Township's primary commercial corridors along Lancaster Avenue. The Tract serves as a transitional area from the commercial areas along Lancaster Avenue to the residential areas to the north and northeast of the site.

The Project as a residential use is consistent with the residential uses in the area. Significant landscaping is proposed along the street frontages will help maintain the visual character along the public ways. The Project also provides a buffer along the residential property lines.

Fiscal Impacts

(1) An analysis of the proposed use's fiscal impacts upon the county, Township, and school district.

A Fiscal Impact Study prepared by Erik Hetzel, AICP/PP, LEED AP was submitted with the Conditional Use application and is attached to this report as **Appendix A**. This Fiscal Impact Study addresses the proposed use's economic impacts. It should be noted that the proposed density is permitted under Article XIX of the Zoning Ordinance, therefore these impacts are already considered under the Zoning Ordinance.

III. <u>Required Documentation under Code §280-135.G for a Development Impact Statement (as applicable)</u>

(A) A conditional use plan for the proposed development, identifying all proposed uses to be located on the site, and demonstrating compliance with the area, bulk and dimensional requirements for the proposed use. The conditional use plan shall be submitted in the form of a sketch plan containing the information required by § 255-19 of the Township Subdivision and Land Development Ordinance.

Conditional Use Plans for the proposed development were submitted with the Conditional Use application. The Conditional Use Plans for the proposed development exceeds the requirements of a sketch plan under Code §255-19.

(B) The applicant shall provide conceptual architectural renderings (perspectives and elevations) of the proposed development.

Conceptual architectural renderings, as they are envisioned at this time, were submitted with the Conditional Use application. It is noted that there are no objective standards in the Code for architecture, except as in Code §280-93. The Project complies with these standards.

(C) The location and size of the site, with evidence supporting the general adequacy for development.

Information regarding the size, location, and adequacy for development can be found in the Plans for the Project.

(D) The proposed residential density of the development and the percentage mix of the various dwelling types.

The proposed residential density is 5.2 dwelling units per acre and all of the proposed dwellings are townhouses. The proposed use and density are permitted in the R-4 District and are detailed on the Plans.

(E) The location, size, accessibility and proposed use of the open space, manner of ownership and maintenance, and a copy of the covenant to be incorporated in the individual deeds, if applicable.

The Conditional Use Plans propose to designate at least 25% of the Tract as common open space for use of the residents of the development. The ownership and maintenance of the open space will be through the homeowner's association to be formed.

(F) Conceptual landscape plans showing locations of trees and shrubs and other landscape improvements (e.g., berms, fences) as necessary to mitigate the adverse visual impacts which the proposed actions will have on the property, adjoining properties and the Township in general. This shall include improvements to the streetscape adjacent to the property boundaries.

Conceptual landscape plans are included in the Conditional Use Plans, specifically on Sheets 11 and 14.

(G) Conceptual plans of proposed utility and drainage systems.

Conceptual plans of the proposed utility and drainage systems are included in the Conditional Use Plans, which were submitted with the Conditional Use application. The Post Construction Stormwater Details and Construction Details can be found on Sheets 7 and 8 of the Conditional Use Plans.

(H) A phasing plan describing how the proposed development will be implemented (if applicable).

The development is proposed to be constructed in one phase.

(I) Plans and renderings indicating the design, unity and aesthetic relationship of building and landscaping within the proposed development with that of the surrounding area.

The Plans show this information.

(i) The text of covenants, easements and existing restrictions or those to be imposed upon the land or structure, including provisions for public utilities, and trails for such activities as hiking or bicycling, if applicable.

A draft Planned Community Declaration was submitted with the Conditional Use application. This Declaration will be finalized at a later stage of the process.

APPENDIX A FISCAL IMPACT STUDY

ERIK W. HETZEL, AICP/PP, LEED AP 16 MANOR ROAD PAOLI, PA 19301 610.322.7154

erik@erikhetzel.com

Memorandum

To: D. Charles Houder, Haverford Properties Inc.

From: Erik Hetzel, AICP/PP, LEED AP

Date: May 17, 2023

Re: Fiscal Impact Analysis – Townhouse Residential Development, Radnor Township

On behalf of Trust U/A Dorrance H. Hamilton dated 3/15/96, Haverford Properties Inc. is proposing a residential development on the site of the Hamilton estate in Radnor Township, Delaware County. Thirty-eight (38) single-family attached townhome units are planned at the northwest corner of the intersection of Strafford Avenue and Eagle Road. This memorandum describes the anticipated future annual fiscal impacts related to the proposed development. A concise summary of fiscal impacts associated with the proposed development is presented in a table on the last page of this memorandum.

Fiscal impacts presented in this analysis were estimated using a methodology developed by the Rutgers University Center for Urban Policy Research, as originally described in The New Practitioner's Guild to Fiscal Analysis¹ and further developed in a later publication by the same authors entitled <u>Development Impact Assessment Handbook</u>². It is projected that, in total, the proposed development will result in beneficial, net-positive annual fiscal impacts to both Radnor Township and the Radnor Township School District.

Revenue Impacts

Real Estate Property Tax - At full build-out under the proposed concept, the development will have a total market value of approximately \$57 million, which translates to an assessed value of approximately \$41.605 million. This assessment

¹ Burchell, Robert W., David Listokin, et al. *The New Practitioner's Guide to Fiscal Impact Analysis*, New Brunswick, NJ: Rutgers, The State University of New Jersey, 1985.

² Burchell, Robert W., David Listokin, et al. *Development Impact Assessment Handbook*. Washington, D.C.: ULI-the Urban Land Institute, 1994.

calculation is based on the current (2022-2023) Delaware County common-level ratio of 1.37, which estimates assessed value at approximately 73% of market value. The proposed development will generate ongoing real estate tax revenue to the local taxing authorities, with an estimated \$99,292 going to the Township and \$608,814 going to the School District annually.

Real Estate Transfer Tax — The Township levies the Real Estate Transfer Tax at the rate of 1.0% of sale price, and the School District levies the Real Estate Transfer Tax at 0.5%. This analysis anticipates that an average of approximately 5% of the residential units in the proposed development will transfer ownership (be sold) in any given year, which equates to annual Transfer Tax Revenues totaling \$28,500 to the Township and \$14,250 to the School District. In addition to the annual Transfer Tax revenues estimated here, it is also important to note that the Township and School District will also receive significant Transfer Tax revenues from the initial sales of every residential unit from the builder to the first homeowners. With a total market value of \$57 million in 2023, this equates to an estimated \$570,000 in initial-sales transfer taxes to the Township (\$57 million market value x 1.0% transfer tax rate = \$570,000). For the School District, initial home sales would generate transfer taxes totaling \$285,000 (\$57 million market value x 0.5% transfer tax rate = \$285,000).

Other Revenues - In addition to the aforementioned tax revenues, the proposed development is expected to generate approximately \$46,143 in Township revenues from other sources, as reported in the Radnor Township 2023 General Fund Budget. These sources include licenses & permits, fines & costs, and departmental earnings. Similarly, the School District will realize additional revenues totaling approximately \$43,818 in revenues from non-tax sources (LEA activities and rentals) and intergovernmental sources (State and Federal funding) as identified in the Radnor Township School District 2023-2024 Final General Fund Budget.

Population Impacts

An estimated 84 residents will be living in the proposed development, including 8 school-aged children. These population estimates are based on demographic multipliers published by the Rutgers University Center for Urban Policy Research (2006)³. This source uses information from the U.S. Census to derive population

³ Burchell, Robert W., David Listokin, et al. *Residential Demographic Multipliers (Pennsylvania)*. New Brunswick, New Jersey: Center for Urban Policy Research, Edward J. Bloustein School of Planning and Public Policy - Rutgers, the State University of New Jersey (2006).

multipliers specific to the Commonwealth of Pennsylvania, categorized by household structure type (i.e., single-family detached, single-family attached, apartments, etc.), and by the number of bedrooms per household.

Economic Impacts

The proposed development will have a beneficial economic "ripple effect" in the local economy, as the new residents and employees use goods and services in and around Radnor Township. In addition, the development phase of the project will provide construction jobs and result in construction-related consumption expenditures in the local and regional economies. These impacts are not reflected in the summary table included in this memorandum but will provide economic benefits over and above the annual revenues described therein.

Cost Analysis

Annual Township and School District expenditures attributable to the proposed development were projected using the Per Capita Multiplier Method described in the <u>Development Impact Assessment Handbook</u>. In calculating the per capita expenditure value for the Township, the methodology uses information from the current (2023) Township budget and accounts for the fact that costs are divided differently among serving both residential and non-residential portions of the Township, based on the actual mix of land uses provided by the County Board of Assessment. Overall, it is estimated that the proposed development will result in Township costs totaling approximately \$78,515 annually, which is more than offset by revenues totaling \$173,936 annually from the tax and non-tax sources described previously.

A similar per capita cost calculation is used for the Radnor Township School District. Based on current (2023) enrollment and budget information provided by the School District, the estimated annual total cost-per-student in the Radnor Township School District used in this analysis is approximately \$32,179. With 8 school-aged children projected to reside in the proposed development, this results in projected annual costs of \$257,434 to the School District, which is more than offset by revenues from taxes and other sources totaling \$666,882. This estimate assumes that all 8 school-aged children will be attending public schools; however, it is likely that some will attend private schools, which would result in lower costs to the Radnor Township School District than estimated here, and a higher net-positive fiscal impact.

Impacts to Public Safety Services and Facilities

Overall, impacts on public safety services and facilities from the proposed development are expected to be minimal. Demands for Police, Fire, and Emergency Management Services (EMS) personnel, vehicles, and facilities are presented in the following table, using planning standards published in the Development Impact Assessment Handbook. Personnel, vehicles, and facilities for Police and Fire are based on the noted planning standards per 1,000 population. EMS standards for personnel and vehicles are per 30,000 population, and EMS calls are per 1,000 population per year.

Public Safety Demand Factors and Projected Demand from Proposed Development

	Residential Planning Standard	Projected Demand
Police		
Personnel	1.50	0.13
Vehicles	0.45	0.04
Facilities (square feet)	150	13
Fire		
Personnel	1.24	0.10
Vehicles	0.15	0.01
Facilities (square feet)	187.5	16
EMS		
Personnel	3.08	0.01
Vehicles	0.75	0.0021
Calls per year per 1,000 population	27.4	2

Conclusions and Summary

In conclusion, the net positive fiscal impact in terms of projected revenues over costs for Radnor Township is expected to be over \$95,000 annually at project completion. The projected net positive fiscal impact to the Radnor Township School District is projected to be over \$400,000 per year. The combined net positive fiscal impact for both taxing authorities is estimated at over \$500,000 annually. Not included in these annual estimates are significant real estate transfer fees that will be paid on the initial sales of every unit from the builder to the first homeowners. The table on the next page summarizes the fiscal impacts to the Township and School District.

Fiscal Impact Summary

	То	wnhomes	
Residential Units	38		
Value per Unit	\$1,500,000		
Market Value of Proposed Development	\$5	7,000,000	
Assessed Value (approx. 73% of market value)	\$4	1,605,839	
New Residential Population		84	
New School-Aged Children		8	
Radnor Township			
Real Estate Tax Revenue (2.3865 mills)	\$	99,292	
Non-Property Tax Revenue	\$	46,143	
Real Estate Transfer Tax (1.0%)	\$	28,500	
Total Township Revenues	\$	173,936	
Total Township Expenditures	\$	(78,515)	
Net Township Fiscal Impact	\$	95,421	
Radnor Township School District			
Real Estate Tax Revenue (14.6329 mills)	\$	608,814	
Non-Property Tax Revenue	\$	1,714	
Intergovernmental Revenue	\$	42,104	
Real Estate Transfer Tax (0.5%)	\$	14,250	
Total School District Revenues	\$	666,882	
Total School District Expenditures	\$	(257,434)	
Net School District Fiscal Impact	\$	409,448	
Total Development-Generated Revenues (Township + School District)	\$	840,818	
Total Development-Generated Expenditures (Township + School District)	\$	(335,949)	
Total Net Annual Fiscal Impact	\$	504,869	

APPENDIX B TRAFFIC IMPACT STUDY

F. Tavani and Associates, Inc.

Traffic Engineering and Planning

15 May 2023

Charlie Houder Haverford Properties, Inc. 40 Morris Avenue, SU 150 Bryn Mawr, PA 19010

VIA EMAIL ONLY

RE: Traffic Engineering Investigations of Strafford Ave 38-unit Residential TH Site Radnor Township, Delaware County, PA

FTA Job #219-011

Dear Mr. Houder:

F. Tavani and Associates, Inc. (FTA) has conducted traffic engineering investigations for the above-referenced project in Strafford. This report has been prepared in accordance with Radnor code requirements and follows the recommended outline as identified in said ordinance.

GENERAL SITE DESCRIPTION

This study considers the traffic impact of a proposed townhouse community of 38 units. The housing is proposed to be for sale and will feature a mix of 3 and 4 bedrooms. The housing is proposed to be market-rate and not age-restricted. The process of entitlements, construction, and occupancy is expected to take 3-5 years. The site is immediately surrounded by other residential properties and the Eagle Village Shopping Center. Beyond them, there is a mix of office and retail buildings within a 1 mile radius of the site. Ample mass transit opportunities are also within a short distance of the site.

The site is located on the west side of Strafford Avenue, north of Eagle Road and is known as the Hamilton Estate. The site is presently developed with some existing housing, namely 6 total dwellings.

The site location and surrounding area are presented in figures which are attached to the end of this report, namely **Figure 1** and **Figure 2**. A reduced version of recent site plans for the project is featured in **Figure 3**. There are no other known approved land development projects in the vicinity of the site.

Note that technical appendices are provided following the figures. Appendix A includes project correspondence, including a recent Township Traffic Engineer (TTE) review memorandum. Photodocumentation of the study area / surrounding intersections is provided in Appendix B.

TRANSPORTATION FACILITIES DESCRIPTION

The site is surrounded on two sides by existing, two-way, one-lane-per-direction, public roadways, namely Strafford Avenue and Eagle Road. The roadways generally do not feature on-street public parking. Posted speed limit signs are present in the vicinity of the site along both Strafford Avenue and Eagle Road, where

Haverford Properties, Inc. 15 May 2023 Page 2 of 5

the posted speed limit is 25 mph. There are limited sidewalk facilities in the study area. The major intersections closest to the site are all-way stop-controlled intersections with no painted crosswalks. There are existing SEPTA mass transit opportunities near the site including bus route 106 and a regional rail station (Strafford), each of which are within approximately one half mile of the site. No traffic signals (save for a flashing beacon at the all-way stop-controlled intersection of Strafford Avenue and Eagle Road) exist or are proposed in the immediate vicinity of the site. More site driveway and surrounding intersection details can be seen in a photodocumentation log provided in **Appendix B**.

The site has 38 units and is proposed to feature internal roadways, 2 site driveways (both on Strafford Avenue), garage/driveway parking, and visitor parking (approximately 14 defined spaces). Sidewalks are also proposed both within the site and along the site side of Strafford Avenue.

There are no known planned roadway improvements in the vicinity of the site. None of the streets surrounding the site are "SR"s (state roadways) – instead they are all local roadways. Eagle Road is a "G" roadway, meaning it is not an SR but is eligible for liquid fuels funding and PennDOT does maintain traffic count data along it, as seen in **Appendix C**.

EXISTING TRAFFIC CONDITIONS

FTA conducted traffic counts at the intersections of:

- Strafford Avenue and Eagle Road,
- Strafford Avenue and Grant Lane/Hedgerow Lane, and
- Eagle Road and N Wayne Avenue.

The counts were conducted on Thursday, 27 April 2023 from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. The counts were conducted during the school year, in fair weather, and on a typical weekday. Existing peak hours of 8:00 AM to 9:00 AM and 4:45 PM to 5:45 PM were selected for study based on system-wide, individual peak hour investigations. The corresponding existing peak hour traffic volumes are plotted and seen in Figure 4. Raw traffic volumes are attached in Appendix D. Local school district calendar information is also contained in that appendix.

With existing peak hour volumes established, present-day "levels of service" can be assessed. Level of service (or LOS) is a descriptive mechanism which is employed by traffic engineers to relate quality of traffic flow to both a letter grade and estimate of delay in seconds per vehicle. LOS results are assessed for traffic which must stop or yield to other traffic. Free-flowing traffic theoretically has no delay, and therefore no LOS rating. Existing levels of service were determined using *Synchro version 11* software, with HCS 6th edition-format outputs selecting for performance reporting purposes. A **LOS Comparison Matrix** was prepared and is attached to the end of this report. The matrix summarizes AM and PM peak hour performance for existing and future (see next section) conditions for all intersections. As shown, existing levels of service are all LOS C or better, with all calculated delays being very low (9 seconds or less in most cases – an acceptable condition). No congestion locations (LOS E/F) are noted.

TRANSPORTATION IMPACT OF THE DEVELOPMENT

Site traffic was estimated using the Institute of Transportation Engineers (ITE) publication, <u>Trip Generation</u>, 11th edition. ITE website trip generation outputs for the best fit land used code matching the site (LUC 215) are attached and provided in **Appendix E**. Note that vehicular trip generation could have been modified to reflect how this site is located in a setting which is within walking distance of several businesses as well as

Haverford Properties, Inc. 15 May 2023 Page 3 of 5

SEPTA bus route 106 plus the Strafford train station, though **no such multimodal credits were taken**. Instead, *all* site traffic was assigned (trip distributed) to the surrounding roadway network in accordance with existing traffic patterns as well as an understanding of existing road network connectivity, current traffic/congestion patterns, and relative locations of major highway interchanges (Interstates 476, 76, 202, and 422 as well as Business Route 30). The assignments are summarized as follows:

- 30% to/from Routes 202 & 422 via Strafford Ave to Old Eagle School Rd;
- 30% to/from Routes 476 & 76 via Eagle Rd to King of Prussia Rd;
- 15% to/from Business Rt 30 West via Eagle Rd and Strafford Ave;
- 15% to/from Business Rt 30 East via Eagle Rd and Strafford Ave, West Ave., and/or Banbury Way; &
- 10% to/from Conestoga Road via Eagle Road.

The trip distribution model for the community is shown in **Figure 5** and the resultant assignment of new, site-generated vehicular peak hour traffic is shown in **Figure 6**. A site trip generation summary table follows below. Note that <u>no</u> credit for the previously-mentioned 6 existing dwelling units was applied to the trip generation for the site, and instead the site was trip generated as a net increase of 38 townhomes.

TABLE 1
PROJECTED VEHICULAR TRIP GENERATION

Al	M PEAK HO	U R	PM	M PEAK HOU	J R
IN	OUT	TOTAL	<u>IN</u>	<u>OUT</u>	TOTAL
5	13	18	13	9	22

Average daily site traffic was also calculated and determined to be approximately 274 trips for the proposed community. Note that, per ITE, the site is eligible for walking / biking / transit credits of either 4 or 8 trips per peak hour, but — as already mentioned and to be conservative — these credits were not applied. See **Appendix E** for more details.

ANALYSIS OF TRANSPORTATION IMPACT

Future traffic conditions are a function of three components: (1) existing traffic volumes, (2) additional traffic due to general background growth as well as other known approved developments in the immediate proximity of the site, and (3) site traffic.

Regarding background growth, the currently promulgated background growth rate for Delaware County is 0.00% per year as reported by PennDOT (see **Appendix** E for more details). Regarding other developments, there is one other nearby known approved land development project in the vicinity of the site, namely the St. Honore single family detached residential development. Excerpts from a recent traffic study prepared for that development are provided in **Appendix** E. That project's future full build site volumes (see **Figure** 7) amount to about 10 total, system-wide, peak hour trips and are incorporated in the future 'no build' traffic volumes for this effort. Since the difference between existing and future 'no build' traffic volumes is so slight, no level of service investigations were conducted for the 'no build' condition, though future 'no build' traffic volume plots are presented in **Figure 8**.

The projected future 'build' (no build plus site traffic as described in the previous sections) peak hour volumes are shown in **Figure 9**. The related projected levels of service are once shown in **LOS Comparison Matrix**. As shown projected 'build' levels of service once again remain essentially the same as they are today, and are all LOS C or better. The impact of site traffic is no added delay at nearly every

Haverford Properties, Inc. 15 May 2023 Page 4 of 5

intersection turning movements and in the 3 instances where there is an impact, the forecasted increase in delay equals 1 second. Both site driveways are forecasted to operate at LOS A during both peak hours. Once again, no congestion locations (LOS E/F) are noted.

No road improvements are necessary to offset the impact of added site traffic. No proposed site driveway will feature traffic volumes which warrant the installation of a traffic signal. The acceptable operation of each site driveway in unsignalized state underscores this conclusion. Level of service worksheets are provided in **Appendix F**.

AUXILIARY LANE ANALYSIS

The need for new auxiliary left- and right-turn lanes at the site driveways was investigated. Investigations were based on PennDOT Strike Off Letter 560-08-4 as well as PennDOT Publication 46 Chapter 11 page 11-46 ("Turn Lane Warrants") using PennDOT-provided worksheets, and focusing on the highest peak hour. Investigations conclude that new auxiliary left- and right-turn lanes are <u>not</u> warranted at the site driveways. More details are provided in **Appendix G**.

ACCIDENT INVESTIGATIONS

Crash data were obtained from PennDOT for the study area intersections. PennDOT defines a reportable crash as follows, "A reportable (crash) is one in which an injury or fatality occurs or if at least one of the vehicles involved requires towing from the scene". For a given intersection, PennDOT considers a crash occurrence of 5 reportable, correctable crashes over a continuous twelve-month period during the past five years to be a threshold value, above which the intersection design should be reviewed to examine if corrective measures can be taken to enhance safety.

Reportable crash data for the 6-year period between 1 January 2017 and 31 December 2022 was obtained from PennDOT. During this time frame, a total of 4 reportable crashes occurred at in study area which, as shown in **Appendix H**, is an approximate 500' radius having a center along Strafford Avenue at the approximate midpoint of the site frontage there. The 4 reportable crashes included mostly angle incidents (75% of all crashes). There were no reported fatalities and no reported serious injuries. The crash frequency is less than 1 crash per year. **Tables 2** and 3 provide summaries of the crash frequencies and the type of crashes. More details are provided in **Appendix H**.

TABLE 2 - CRASH FREQUENCY BY INTERSECTION

	F	r)	Average				
Location	2017	2018	2019	2020	2021	2022	Per Year
~500' R of Site D'ways along Strafford Ave	2	1	1	0	0	0	0.67

TABLE 3 - CRASH TYPES

	Total 5-Year Occurrence & Type of Crash						
Location	Angle	Rear End	Head On	all others	Total		
~500' R of Site D'ways along Strafford Ave	3	0	1	0	4		

Haverford Properties, Inc. 15 May 2023 Page 5 of 5

CONCLUSIONS

As mentioned earlier, a LOS Comparison Matrix is provided to afford a simple means to review and assess site traffic impact in the study area. In locations where levels of service are not forecasted to change from one scenario to the next (i.e., from Existing to No Build, or from No Build to Build), hyphens are used. As shown, there are many instances in which the impact of site traffic results in essentially no measurable change in traffic performance and the underlying traffic performance is already acceptable, and with very low delays. Thus the traffic impact of the proposal on the surrounding community is negligible.

Other key conclusions are as follows:

- The study area is presently well-served by transit opportunities;
- All intersections in the study area operate at LOS C or better under existing and future conditions;
- The crash history in the vicinity of the site is unremarkable;
- Both site driveways are forecasted to operate at LOS A during both peak hours, and for all turning movements;
- No site driveway requires new left-turn or right-turn auxiliary lanes per investigations using standard PennDOT tools:
- The foregoing conclusions were reached taking no credits for walking, biking, or transit even though ITE has identified credits for which this site is eligible;
- The foregoing conclusions were reached incorporating the effects of the full buildout of the nearby St. Honore site; and
- The foregoing conclusions were reached also taking no trip generation credits the existing 6 dwellings currently found on the site, even though such credit would have been appropriate.

I hope this has been helpful. Please let me know if I can answer any questions.

Thank you,

morrows

ASSOCIATE

rincipal

attachments

cc: George Broseman, Esq. Rob Lambert, P.E.

LEVEL OF SERVICE AND EXPECTED DELAY FOR UNSIGNALIZED INTERSECTIONS*

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SECONDS)
a	0 to 10.0
ь	10.1 to 15.0
c	15.1 to 25.0
d	25.1 to 35.0
е	35.1 to 50.0
f	Over 50.0

^{*} Transportation Research Board's Highway Capacity Manual

LEVEL OF SERVICE AND EXPECTED DELAY FOR SIGNALIZED INTERSECTIONS*

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY PER VEHICLE (IN SECONDS)
A	Very short delay, good progression; most vehicles do not stop at intersection.	≤ 10.0
В	Generally good signal progression and/or short cycle length; more vehicles stop at intersection than Level of Service A.	10.1 to 20.0
С	Fair progression and/or longer cycle length; significant number of vehicles stop at intersection.	20.1 to 35.0
D	Congestion becomes noticeable; individual cycle failures; longer delays from unfavorable progression, long cycle length, or high volume/ capacity ratios; most vehicles stop at intersection.	35.1 to 55.0
E	Usually considered <u>limit of acceptable</u> <u>delay</u> indication of poor progression, long cycle length, or high volume/ capacity ratio; frequent individual cycle failures.	55.1 to 80.0
F	Could be considered excessive delay in some areas, frequently an indication of saturation (i.e., arrival flow exceeds capacity), or very long cycle lengths with minimal side street "green" time. Capacity is not necessarily exceeded under this level of service.	> 80.0

^{*} Transportation Research Board's Highway Capacity Manual

LEVEL OF SERVICE COMPARISON TABLES

			1. Wayne Ave 8	& Eagle Ave			
Direction	Movement	AM Peak Hour				PM Peak Hour	
Strafford Ave		Existing (2023)	No Build (2028)	Build (2028)	Existing (2023)	No Build (2028)	Build (2028)
Eastbound	LTR	C 20		22	C 21		944
Westbound	LTR	C 20	Vi et	ee:	C 20	-	
Grant Ln / Hed	gerow Ln						
Northbound	LTR	A 3	-		A 4	22	
Southbound	LTR	A 4	42	===	A 4	: #= :	-
	OVERALL:	A 8		A 9	A 10		

Control Type: Signal

		2	2. Strafford Ave	& Eagle Ave			
Direction	Movement	AM Peak Hour				PM Peak Hour	
Eagle Ave		Existing (2023)	No Build (2028)	Build (2028)	Existing (2023)	No Build (2028)	Build (2028
Eastbound	LTR	A 8		-	A 9	122	
Westbound	LTR	A 9	22	144	A 9		S etti
Strafford a	Ave						
Northbound	LTR	A 8	172		A 9	••	**
Southbound	LTR	A 9		120	A 9	194	THE
	OVERALL:	A 8		A 9	A 9	· N.	

Control Type: AWSC

Direction	Movement	AM Peak Hour				PM Peak Hour	
Eagle Ave		Existing (2023)	No Build (2028)	Build (2028)	Existing (2023)	No Build (2028)	Build (2028
Eastbound	LTR	A 8	-	:==	A 8		=
Westbound	LTR	A 8	*	A 9	A 8		**
N Wayne	Ave						
Northbound	LTR	Α7	188	:55	A 8		920
Southbound	LTR	A 8	36		A 7	CHA	5 44
	OVERALL:	A 8			A 8		ST.

Control
Type:

		4.	Strafford Ave &	W Site Drive	•		
Direction	Movement	AM Peak Hour				PM Peak Hour	
W Site Drive		Existing (2023)	No Build (2028)	Build (2028)	Existing (2023)	No Build (2028)	Build (2028
Northbound	LR	Tay No.		A 8			A 9
Strafford	Ave						
Westbound	L			A 9			A 9
	OVERALL:	7.50° MARI		A 1			A 1

Control Type: TWSC

		5.	. Strafford Ave	& E Site Drive			
Direction	Movement	AM Peak Hour				PM Peak Hour	
E Site Dri	ive	Existing (2023)	Existing (2023) No Build (2028) B		Existing (2023)	No Build (2028)	Build (2028
Northbound	LR		B IMM TOP	A 8			A 9
Strafford	Ave						
Westbound	L			A 9			A 9
	OVERALL:			A 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A 1

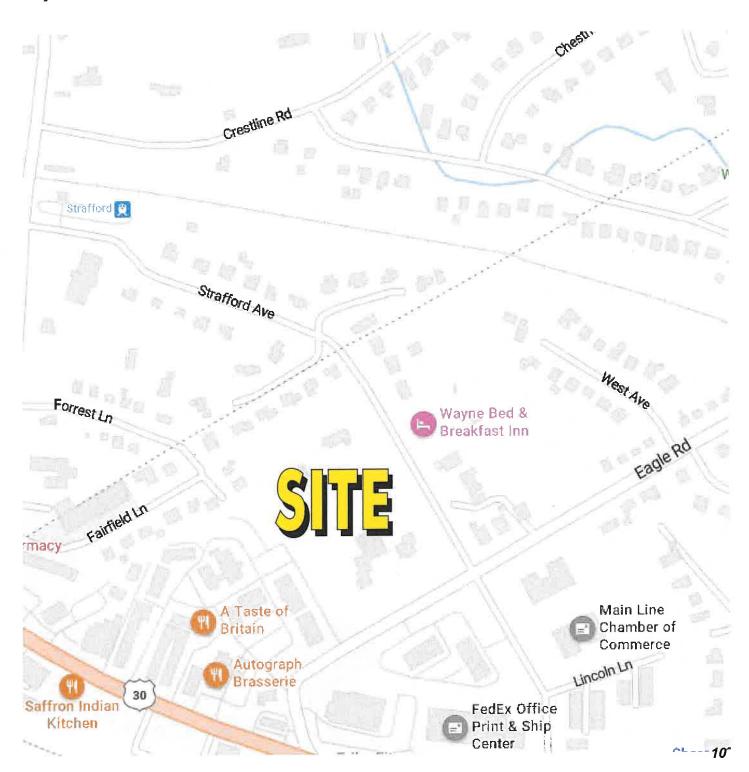
Control Type: TWSC

-- indicates no change from the previous scenario

Site and Surrounding Area - Map View

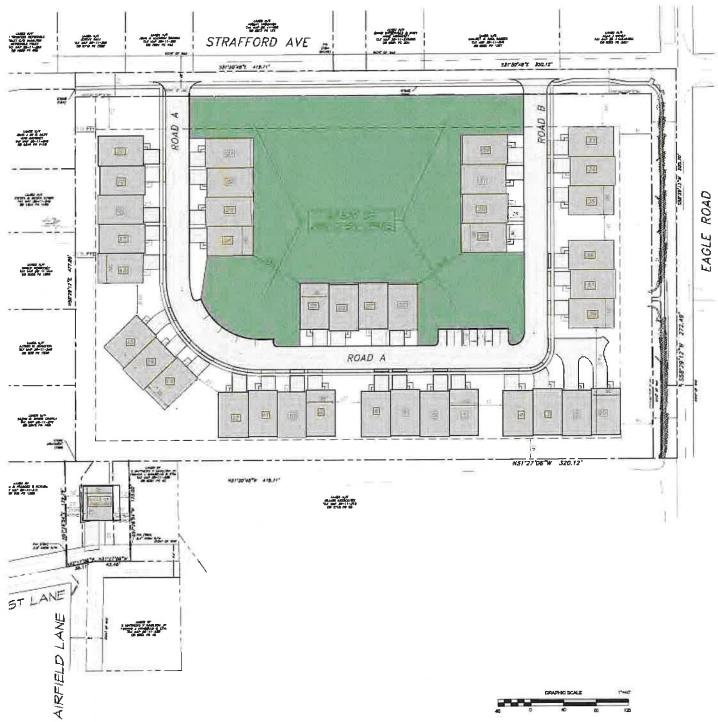
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania

May 2023*


^{*} Figure preparation date. See report for data collection date(s).

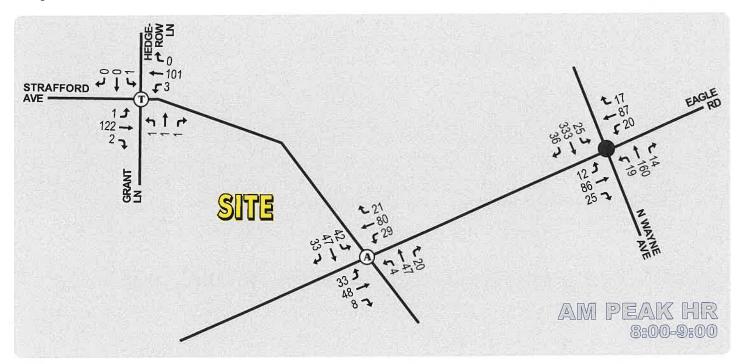
Site and Surrounding Area - Aerial View

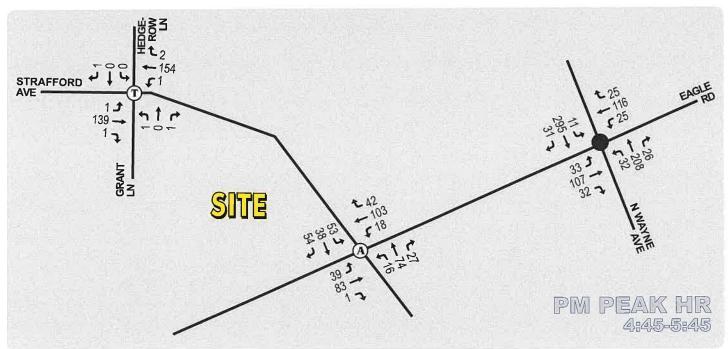
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania



Site Plan Excerpt

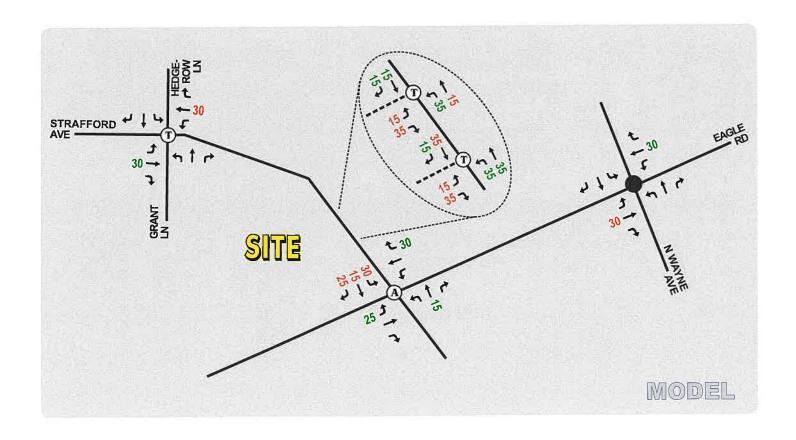
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania





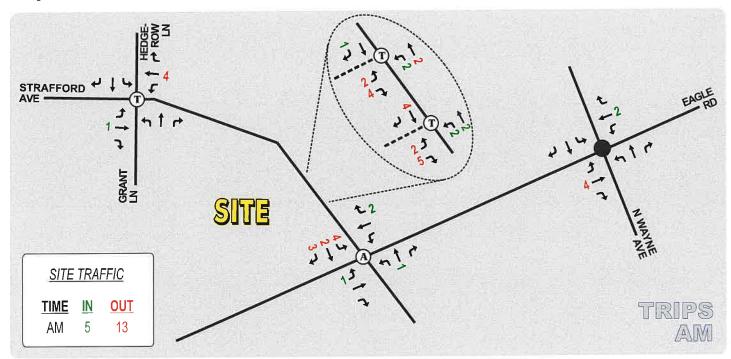
Existing (2023) Peak Hour Traffic Volumes

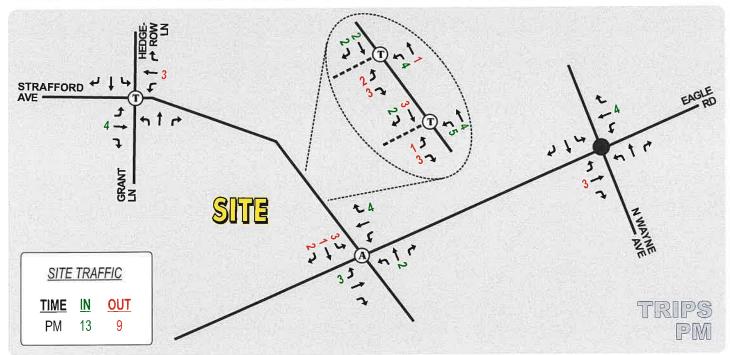
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania



Site Peak Hour Traffic - Model

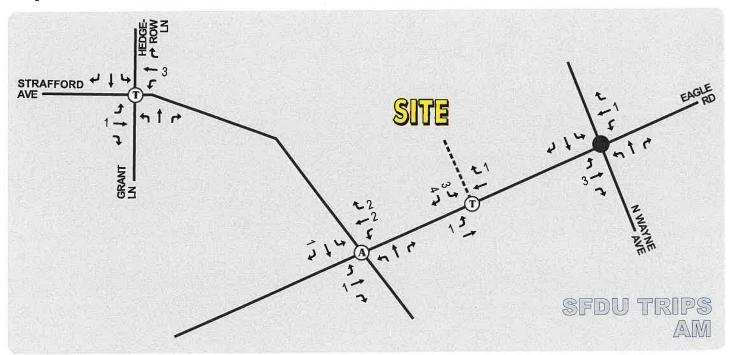
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania

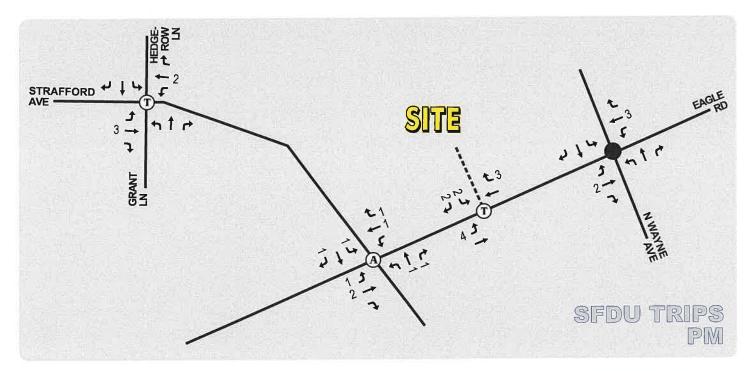




Site Peak Hour Traffic - Volumes

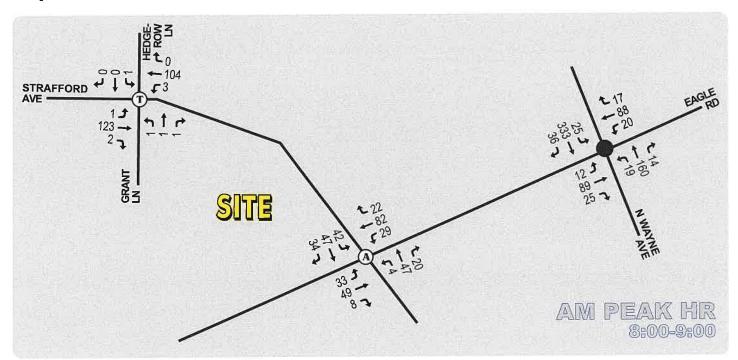
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania

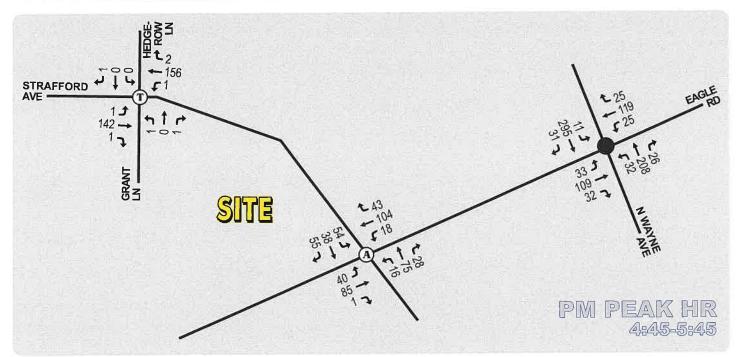


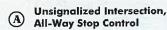


Other Development (St. Honore) Peak Hour Traffic Volumes

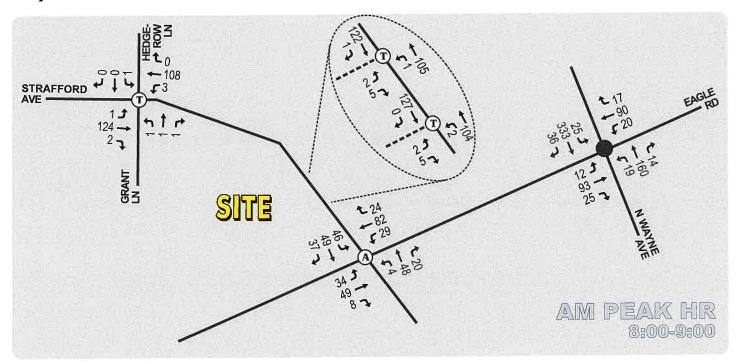
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania

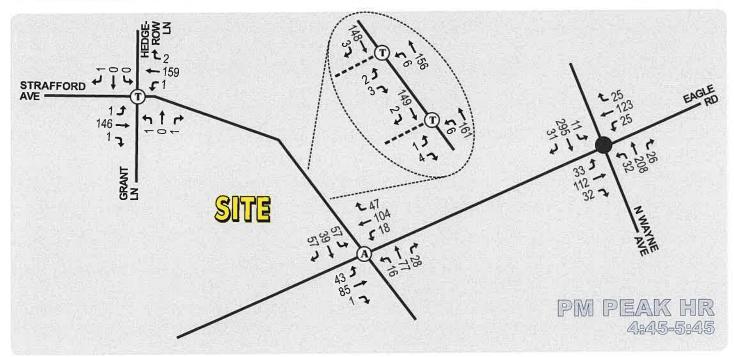





Future (2028) No Build Peak Hour Traffic Volumes

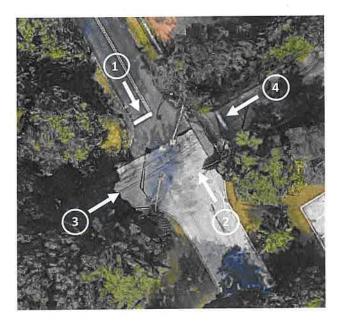
Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania





Future (2028) Build Peak Hour Traffic Volumes

Strafford Avenue Residential - 38 Townhouses Radnor Township, Delaware County, Pennsylvania


APPENDIX A Correspondence

This page intentionally blank

APPENDIX B *Photodocumentation*

Road name (# of pages)

- 1. Eagle Road & Strafford Road (3)
- 2. Strafford Avenue & Grant Lane/Hedgerow Lane (3)
- 3. Eagle Road & Wayne Avenue (3)

Aerial image of intersection

Photo #1 - Description: Eastbound Strafford Road

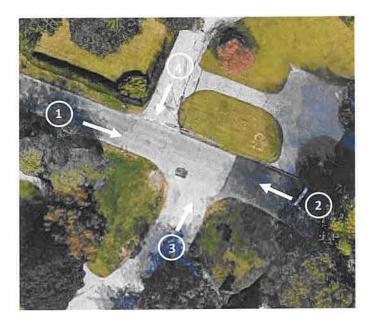

Photo # 2 - Description: Westbound Strafford Road

Photo #3 - Description: Northbound Eagle Road

Photo #4 - Description: Southbound Eagle Road

Aerial image of intersection

Photo #1 - Description: Eastbound Strafford Road

Photo # 2 - Description: Westbound Strafford Road

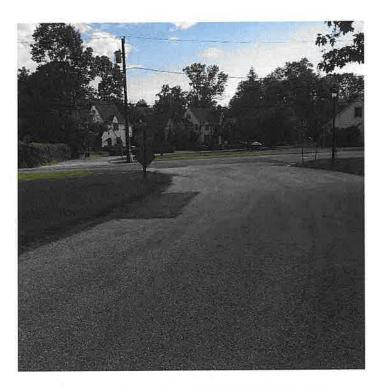
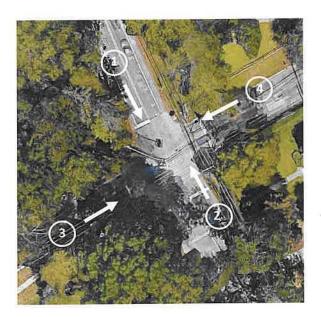



Photo #3 - Description: Northbound Grant Lane

Photo #4 - Description: Southbound Hedgerow Lane

Aerial image of intersection

Photo #1 - Description: Eastbound Wayne Avenue

Photo #2 - Description: Westbound Wayne Avenue

Photo #3 - Description: Northbound Eagle Road

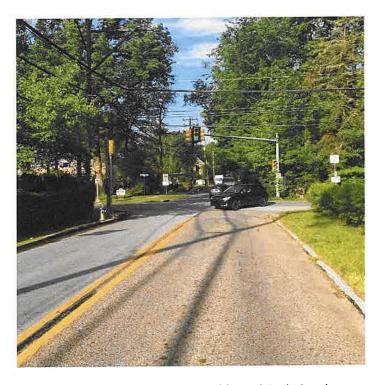
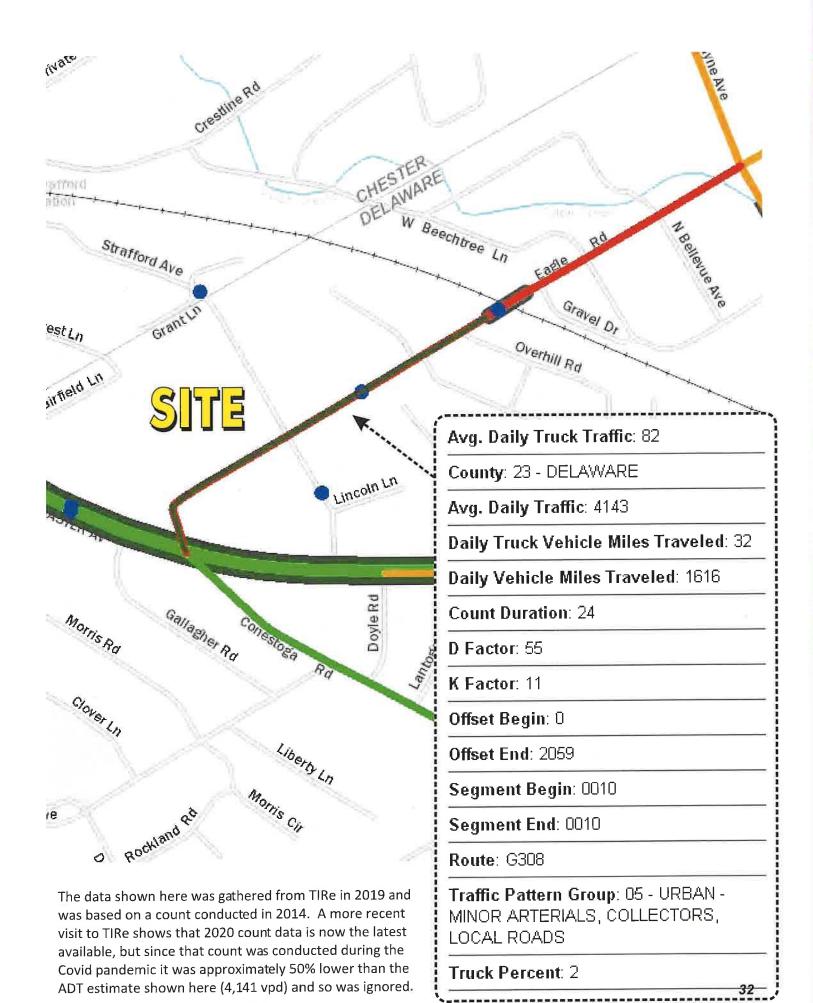
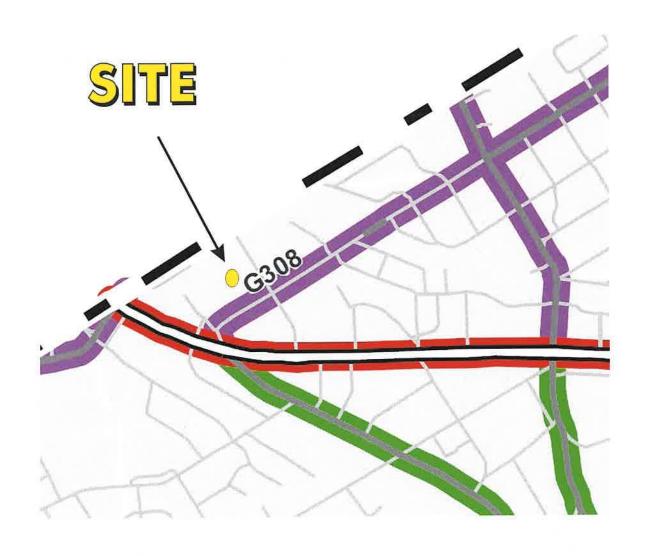
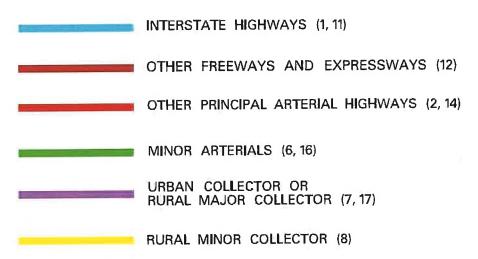





Photo #4 - Description: Southbound Eagle Road

APPENDIX C *TIRe Data*

APPENDIX D Data Collection

File Name : 219-011_EagleGrant_1061751_04-27-2023 Site Code : 219-011 EagleGrant

Start Date : 4/27/2023

										d- Light	s - Bus	ses - T	rucks					Grant			
			Straffor					ledger					Straffor				F	Grani rom W			
			om No					rom Ea			Left	Thru	Right		App. Total	Left	Thru	Right	U-Tum	App, Total	Int. Tol
Start Time	Left	Thru	Right	U-Tum	App. Total	Left	Thru		U-Tum	App. Total		10	Night 0	0-10m	10	0	0	1	0	дрр. года 1	2
07:00 AM	0	16	0	0	16	0	0	0	0	0	0	10	0	0	10	0	0	Ö	0	o l	4
07:15 AM	0	32	1	0	33	0	0	0	0	0	0	20	0	0	20	0	0	ő	0	ŏ	4
07:30 AM	0	24	0	0	24	0	0	0	0	-	1	25	1	0	27	1	0	1	0	2	6
07:45 AM	0	32	0	0	32	0	0	0	0	0	1	65	1	0	67	1	0	2	0	3	17
Total	0	104	1	0	105	0	0	U	U	U	1	65		U	Org		·	_	Ū	0,1	
08:00 AM	0	35	1	0	36	0	0	0	0	0	1	21	0	0	22	1	0	0	0	1	5
08:15 AM	0	37	0	0	37	1	0	0	0	1	0	18	0	0	18	0	0	1	0	1	5
08:30 AM	1	20	0	0	21	0	0	0	0	0	1	30	0	0	31	0	0	0	0	0	5
08:45 AM	0	30	1	0	31	0	0	0	0	0	1	32	0	0	33	0	1	0	0	1 3	- 6
Total	1	122	2	0	125	1	0	0	0	1	3	101	0	0	104	1	1	1	U	3	23
04:00 PM	1	36	1	0	38	- 1	0	0	0	1	l 0	28	0	0	28	0	0	1	0	1	6
04:00 PM 04:15 PM	0	25	1	0	26	1	0	Ö	0	1	ŏ	32	Ö	Ö	32	ŏ	Ö	1	0	1	(
04:15 PM 04:30 PM	1	23	2	0	26	Ö	0	0	0	Ö	1	31	ŏ	ő	32	Ö	Ö	1	Ō	1	
04:30 PM	-90	39	0	0	40	0	Ö	ĭ	ő	1	0	47	0	2	49	0	0	1	0	1	
Total	3	123	4	0	130	2	0	1	0	3	1	138	0	2	141	0	0	4	0	4	2
05:00 PM	0	28	1	0	29	0	0	0	0	0	0	40	1	0	41	0	0	0	0	0	
05:00 PM	0	29	Ö	0	29	0	0	ő	ŏ	0	o o	37	Ó	Ō	37	1	0	0	0	1	(
05:30 PM	0	43	0	0	43	Ö	Õ	Ö	Ö	0	1	30	1	0	32	0	0	0	0	0	1
05:45 PM	0	22	1	0	23	ő	o	o	Ö	0	1	33	0	0	34	1	0	0	0	1	
Total	0	122	2	0	124	0	0	0	0	0	2	140	2	0	144	2	0	0	0	2	2
Grand Total	4	471	9	0	484	3	0	1	0	4	7	444	3	2	456	4	1	7	0	12	9:
Apprch %	0.8	97.3	1.9	Ö		75	Õ	25	ō		1.5	97.4	0.7	0.4		33.3	8.3	58.3	0	0.00	
Total %	0.4	49.3	0.9	0	50.6	0.3	0	0.1	0	0.4	0.7	46.4	0.3	0.2	47.7	0.4	0.1	0.7	0	1.3	
Lights	4	462	9	0	475	3	0	1	0	4	5	441	3	2	451	3	0	7	0	10	9
% Lights	100	98.1	100	0	98.1	100	0	100	0	100	71.4	99.3	100	100	98.9	75	0	100	0	83.3	98
Buses	0	4	0	0	4	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	
% Buses	0	0.8	0	0	0.8	0	0	0	0	0	0	0.7	0	0	0.7	0	0	0	0	0	C
Trucks	0	5	0	0	5	0	0	0	0	0	2	0	0	0	2	1	1	0	0	2	١.
% Trucks	0	1.1	0	0	1	0	0	0	0	0	28.6	0	0	0	0.4	25	100	0	0	16.7	C

File Name : 219-011_EagleGrant_1061751_04-27-2023 Site Code : 219-011 EagleGrant

Start Date : 4/27/2023

			Straffor					ledger				Fr	Straffor	uth				Grant rom W	est	1,5470	
Start Time	Left	Thru	Right		App. Total		Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App, Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From	07:00	AM to	11:45 Al	M - Pea	ak 1 of	1													
Peak Hour fo											or .				- 7		_	_		4.1	
08:00 AM	0	35	1	0	36	0	0	0	0	0	1	21	0	0	22	1	0	0	0		59
08:15 AM	0	37	0	0	37	1	0	0	0	1	0	18	0	0	18	0	0	1	0	1	57
08:30 AM	1	20	0	0	21	0	0	0	0	0	1	30	0	0	31	0	0	0	0	0	52
08:45 AM	0	30	1	0	31	0	0	0	0	0	1	32	0	0	33	0	1_	0	0	1	65
Total Volume	1	122	2	0	125	1	0	0	0	1	3	101	0	0	104	1	1	1	0	3	233
% App. Total	0.8	97.6	1.6	0		100	0	0	0		2,9	97.1	0	0_		33.3	33.3	33.3	0		200
PHF	.250	.824	.500	.000	.845	.250	.000	.000	.000	.250	.750	.789	.000	.000	.788	.250	.250	.250	.000	.750	.896
Lights	1	117	2	0	120	1	0	0	0	1	2	99	0	0	101	0	0	1	0	1	223
% Lights	100	95.9	100	0	96.0	100	0	0	0	100	66.7	98.0	0	0	97.1	0	0	100	0	33.3	95.7
Buses	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
% Buses	0	0.8	0	0	0.8	0	0	0	0	0	0	2.0	0	0	1.9	0	0	0	0	0	1.3
Trucks	ō	4	Ō	0	4	0	0	0	0	0	1	0	0	0	1	1	1	0	0	2	7
% Trucks	ō	3.3	0	0	3.2	0	0	0	0	0	33.3	0	0	0	1.0	100	100	0	0	66.7	3.0
		_			0= 4= 51																
Peak Hour A	nalysis	From	12:00	PM to	05:45 PI	M - Pe	акто														
Peak Hour fo							0	4	0	4	0	47	0	2	49	0	0	1	0	1	91
04:45 PM	1	39	0	0	40	0	0	,	0		0	40	1	ō	41	0	o o	0	Ô	0	70
05:00 PM	0	28	1	0	29	0	0	0	0	0	0	37	'n	0	37	1	Õ	0	Õ	1	67
05:15 PM	0	29	0	0	29	0	0	0		0	1	30	4:	0	32	0	0	Ö	0	0	75
05:30 PM	0	43	0	0	43	0	0	0	0	1	1	154	2	2	159	1	0	1	0	2	303
Total Volume	1	139	1	0	141	0	0	•	-	'	0.6	96.9	1.3	1.3	133	50	0	50	Õ	_	000
% App. Total	0.7	98.6	0.7	0		0	0	100	0	050		.819	.500	.250	.811	.250	.000	.250	.000	.500	.832
PHF	.250	.808	.250	.000	.820	.000	.000	.250	.000	.250	.250			<u>.250</u> 2	159	.250	.000	1	.000	2	303
Lights	1	139	1	0	141	0	0	1	0	1	1	154	100	100	100	100	0	100	0	100	100
% Lights	100	100	100	0	100	0	0	100	0	100	100	100	100			0	0	0	0	0	100
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_		0	0	0	
Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	U	U	U	U,	

File Name : 219-011_Signal_1061742_04-27-2023 Site Code : 219-011 Signal

Start Date : 4/27/2023

							@	Groups	Printe	d- Light	s - Bus	ses - T									
			Wayn					Eagle				_	Wayn				_	Eagle rom W			
			rom No					rom E			1 6		om So Right			Left	Thru	Right	U-Tum	App, Total	Int. Total
Start Time	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru			App, Total		5	Right 2	0-14m	ярр. тоtаг 9	87
07:00 AM	1	41	5	0	47	2	6	0	0	8	1	16	6	0	19	2 1	14	5	0	20	129
07:15 AM	3	58	10	0	71	6	10	3	0	19	0	16	3	-	33	1	18	5	0	24	170
07:30 AM	5	79	6	0	90	8	13	2	0	23	6	19	8	0	52	7	17	12	0	36	210
07:45 AM	10	88	4	0	102	4	14	2	0	20	7	36	<u>9</u> 26	0	127	11	54	24	0	89	596
Total	19	266	25	0	310	20	43	7	0	70	14	87	26	U	127	- 11	34	24	U	09	i.
08:00 AM	5	85	9	0	99	8	18	5	0	31	8	45	4	0	57	4	30	6	0	40	227
08:15 AM	2	99	5	ō	106	5	21	6	0	32	2	43	5	0	50	1	26	7	0	34	222
08:30 AM	14	66	7	Õ	87	2	30	3	Ō	35	3	36	2	0	41	5	17	8	0	30	193
08:45 AM	4	83	15	0	102	5	18	3	0	26	6	36	3	0	45	2	13	4	0	19	192
Total	25	333	36	0	394	20	87	17	0	124	19	160	14	0	193	12	86	25	0	123	834
04:00 PM	2	63	4	0	69	4	28	7	0	39	7	59	5	0	71	6	23	4	0	33	212
04:15 PM	4	36	8	0	48	6	26	3	0	35	5	53	6	0	64	10	20	6	0	36	183
04:30 PM	6	58	7	0	71	7	27	9	0	43	4	47	4	0	55	7	17	6	0	30	199
04:45 PM	1	69	6	0	76	4	30	10	0	44	11	42	5	0	58	9	30	7	0	46	224
Total	13	226	25	0	264	21	111	29	0	161	27	201	20	0	248	32	90	23	0	145	818
05:00 PM	5	69	3	0	77	3	19	7	0	29	7	56	11	0	74	7	27	8	0	42	222
05:15 PM	2	87	13	ŏ	102	8	35	6	0	49	7	48	4	0	59	6	25	8	0	39	249
05:30 PM	3	70	9	Ö	82	10	32	2	0	44	7	62	6	0	75	11	25	9	0	45	246
05:45 PM	5	72	2	0	79	8	30	4	0	42	9	52	9	0	70	6	15	3	0	24	215
Total	15	298	27	0	340	29	116	19	0	164	30	218	30	0	278	30	92	28	0	150	932
Grand Total	72	1123	113	0	1308	90	357	72	0	519	90	666	90	0	846	85	322	100	0	507	3180
Apprch %	5.5	85.9	8.6	0		17.3	68.8	13.9	0		10.6	78.7	10.6	0		16.8	63.5	19.7	0	9292	
Total %	2.3	35.3	3.6	0	41.1	2.8	11.2	2.3	0	16.3	2.8	20,9	2.8	0	26.6	2.7	10.1	3.1	. 0	15.9	
Lights	70	1097	110	0	1277	83	349	69	0	501	89	652	88	0	829	84	320	97	0	501	3108
% Lights	97.2	97.7	97.3	0	97.6	92.2	97.8	95.8	0	96.5	98.9	97.9	97.8	0	98	98.8	99.4	97	0	98.8	97.7
Buses	0	9	0	0	9	1	3	2	0	6	0	4	1	0	5	0	1	1	0	2	22
% Buses	0	0.8	0	0	0.7	1,1	0.8	2.8	0	1.2	0	0.6	1.1	0	0.6	0	0.3	1	0	0.4	0.7
Trucks	2	17	3	0	22	6	5	1	0	12	1	10	1	0	12	1	1	2	0	4	50
% Trucks	2.8	1.5	2.7	0	1.7	6.7	1.4	1.4	0	2.3	1.1	1.5	1.1	0	1.4	1.2	0.3	2	0	8.0	1.6

File Name : 219-011_Signal_1061742_04-27-2023 Site Code : 219-011 Signal

Start Date : 4/27/2023

	I		Wayn					Eagle					Wayn					Eagle			
			rom No				F	rom E					om Sc				F	rom W			
Start Time	Left	Thru			App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
Peak Hour A						M - Pe	ak 1 of	1		- Carlot aproved many					- History Commercial						
Peak Hour for																					
08:00 AM	5	85	9	0	99	8	18	5	0	31	8	45	4	0	57	4	30	6	0	40	227
08:15 AM	2	99	5	Ō	106	5	21	6	0	32	2	43	5	0	50	1	26	7	0	34	222
08:30 AM	14	66	7	0	87	2	30	3	0	35	3	36	2	0	41	5	17	8	0	30	193
08:45 AM	4	83	15	0	102	5	18	3	0	26	6	36	3	0	45	2	13	4	0	19	192
Total Volume	25	333	36	0	394	20	87	17	0	124	19	160	14	0	193	12	86	25	0	123	834
% App. Total	6.3	84.5	9.1	0		16.1	70.2	13.7	0		9.8	82.9	7.3	0		9.8	69.9	20.3	0		
PHF	.446	.841	.600	.000	.929	.625	.725	.708	.000	.886	.594	.889	.700	.000	.846	.600	.717	.781	.000	.769	.919
Lights	24	319	36	0	379	16	85	16	0	117	19	157	14	0	190	12	85	25	0	122	808
% Lights	96.0	95.8	100	Ō	96.2	80.0	97.7	94.1	0	94.4	100	98.1	100	0	98.4	100	98.8	100	0	99.2	96.9
Buses	0	3	0	ō	3	1	1	1	0	3	0	1	0	0	1	0	1	0	0	1	8
% Buses	ا م	0.9	Ō	Ō	0.8	5.0	1.1	5.9	0	2.4	0	0.6	0	0	0.5	0	1.2	0	0	0.8	1.0
Trucks	1	11	0	0	12	3	1	0	0	4	0	2	0	0	2	0	0	0	0	0	18
% Trucks	4.0	3.3	0	0	3.0	15.0	1.1	0	0	3.2	0	1.3	0	0	1.0	0	0	0	0	0	2.2
Peak Hour A		F	40.00	DM 4	05.45 D	M Do	ak 1 at	F 4													
Peak Hour fo							ak i U														
	FERG	e mer: 69	6	ı begiii 0	76	45 - 101	30	10	0	44	11	42	5	0	58	9	30	7	0	46	224
04:45 PM 05:00 PM	5	69	3	0	77	3	19	7	0	29	7	56	11	ŏ	74	7	27	8	ō	42	222
05:00 PM	2	8 7	13	0	102	8	35	6	Ô	49	7	48	4	ő	59	- 6	25	8	Ö	39	249
05:30 PM	3	70	9	0	82	10	32	2	0	44	7	62	6	0	75	11	25	9	0	45	246
Total Volume	11	295	31	0	337	25	116	25	0	166	32	208	26	0	266	33	107	32	0	172	941
% App. Total	3.3	87.5	9.2	0	507	15.1	69.9	15.1	Ö	100	12	78.2	9.8	0		19.2	62.2	18.6	0		
PHF	.550	.848	.596	.000	.826	.625	.829	.625	.000	.847	.727	.839	.591	.000	.887	.750	.892	.889	.000	.935	.945
Lights	10	294	31	.000	335	25	115	24	0	164	32	207	25	0	264	33	107	32	0	172	935
% Lights	90.9	99.7	100	0	99.4	100	99.1	96.0	ő	98.8	100	99.5	96.2	0	99.2	100	100	100	0	100	99.4
Buses	0.5	33.7	0	0	1	0	0	0.0	ŏ	0	0	0	0	Ö	0	0	0	0	0	0	1
% Buses	0	0.3	0	0	0.3	ő	ñ	Ô	ŏ	Õ	ő	Õ	Ö	Ō	ŏ	0	0	0	0	0	0.1
7 Buses	1	0.5	0	Ö	1	ő	1	1	Ö	2	ŏ	1	1	Ö	2	Ö	0	0	0	0	5
% Trucks	9.1	n	ő	0	0.3	l ő	0.9	4.0	ő	1.2	ő	0.5	3.8	Ō	0.8	0	0	0	0	0	0.5
76 Trucks	9.1	U	U	U	0.3		0.9	7.0	J	1.2		0.0	0.0	•	0.0	-	•	_	,	- 1	

File Name: 219-011_EagleStraff_1061748_04-27-2023

Site Code: 219-011 EagleStraff

Start Date : 4/27/2023

							(1)			ed- Light	s - Bus										
			Straffor					Eagle rom E					Straffor				F	Eagle rom W			
Start Time	Left	Thru	Right	U-Tum	App. Tolai	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Tum	App. Total	Int. Total
07:00 AM	2	10	4	0	16	1	5	3	0	9	0	6	5	0	11	1	7	0	0	8	44
07:15 AM	7	14	10	Ö	31	5	19	3	ō	27	1	4	1	0	6	3	10	0	0	13	77
07:30 AM	6	11	6	Ö	23	2	14	3	0	19	0	12	2	0	14	5	10	0	0	15	71
07:45 AM	15	14	6	0	35	3	27	6	0	36	0	10	2	0	12	11	16	2	0	29	112
Total	30	49	26	0	105	11	65	15	0	91	1	32	10	0	43	20	43	2	0	65	304
08:00 AM	11	15	10	0	36	6	15	5	0	26	1	11	7	0	19	4	18	3	0	25	106
08:15 AM	15	13	8	0	36	8	20	4	0	32	1	8	4	0	13	7	9	3	0	19	100
08:30 AM	7	8	6	0	21	6	20	4	0	30	1	17	5	0	23	10	8	1	0	19	93
08:45 AM	9	11	9	0	29	9	25	8	0	42	1_	11	4	0	16	12	13	_1_	0	26	113
Total	42	47	33	0	122	29	80	21	0	130	4	47	20	0	71	33	48	8	0	89	412
la																					
04:00 PM	9	16	10	0	35	3	29	11	0	43	1	12	4	0	17	6	15	2	0	23	118
04:15 PM	8	13	9	0	30	9	26	10	0	45	5	12	6	0	23	9	15	1	0	25 30	123 115
04:30 PM	4	9	10	0	23	3	25	4	0	32	2	20	8	0	30	9 12	20 23	1	0	36	160
04:45 PM	15	9	19	0	43	2	26	15	0	43	7 15	21 65	10 28	0	38 108	36	73	5	0	114	516
Total	36	47	48	0	131	17	106	40	0	163	15	65	28	U	108	30	13	5	U	114	
05:00 PM	13	6	11	0	30	3	21	12	0	36	2	19	3	0	24	9	20	0	0	29	119
05:15 PM	13	10	7	0	30	6	28	12	0	46	3	15	8	0	26	11	14	0	0	25	127
05:30 PM	12	13	17	0	42	7	28	3	0	38	4	19	6	0	29	7	26	0	0	33	142
05:45 PM	7	6	7	0	20	2	33	- 8	0	43	3	19	2	0	24	8	11	1	0	20	107
Total	45	35	42	0	122	18	110	35	0	163	12	72	19	0	103	35	71	1	0	107	495
Grand Total	153	178	149	0	480	75	361	111	0	547	32	216	77	0	325	124	235	16	0	375	1727
Apprch %	31.9	37.1	31	0	1.290000	13.7	66	20.3	0	C2000000	9.8	66.5	23.7	0	26.5	33.1	62.7	4.3	0	04.7	
Total %	8.9	10.3	8.6	0	27.8	4.3	20.9	6,4	0	31.7	1.9	12.5	4.5	0	18.8	7,2	13.6	0.9	0	21.7	1007
Lights	149	177	144	0	470	72	352	108	0	532	32	216	75	0	323	122	234	16	0	372 99.2	1697 98.3
% Lights	97.4	99.4	96.6	0	97.9	96	97.5	97.3	0	97.3	100	100	97.4	0	99.4	98.4	99.6	100	0	99.2	98.3
Buses	3	0	2	0	5	0	4	1	0	5	0	0	0	0	0	1.6	0	0	0	0.5	0.7
% Buses	2	0	1.3	0		0	1.1	0.9	0	0.9	0	0	2	0	0 2	1.6	1	0	0	1	18
Trucks	1	1	3	0	5	3	5	2	0	10 1.8	0	0	2.6	0	0.6	0	0.4	0	0	0.3	1 1
% Trucks	0.7	0.6	2	0	1)	4	1.4	1.8	0	1.8	U	U	2.0	U	0.0	U	0.4	U	U	0.0	

File Name : 219-011_EagleStraff_1061748_04-27-2023 Site Code : 219-011 EagleStraff

Start Date : 4/27/2023

			Straffo	rd				Eagle					Straffor	rd				Eagle			
			rom No				F	rom Ea				Er	om So	uth				om W			
Start Time	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Left	Thru	Right	U-Tum	App. Total	Int, Total
Peak Hour A	nalvsis	From	07:00	AM to	11:45 A	M - Pe	ak 1 of	1													
Peak Hour fo																					
08:00 AM	11	15	10	ō	36	6	15	5	0	26	1	11	7	0	19	4	18	3	0	25	106
08:15 AM	15	13	8	0	36	8	20	4	0	32	1	8	4	0	13	7	9	3	0	19	100
08:30 AM	7	8	6	0	21	6	20	4	0	30	1	17	5	0	23	10	8	1	0	19	93
08:45 AM	9	11	9	0	29	9	25	8	0	42	1	11	4_	0	16	12	13	1_	0	26	113
Total Volume	42	47	33	0	122	29	80	21	0	130	4	47	20	0	71	33	48	8	0	89	412
% App. Total	34.4	38.5	27	0		22.3	61,5	16.2	0		5.6	66.2	28.2	00		37.1	53.9	9	0		040
PHF	.700	.783	.825	.000	.847	.806	.800	.656	.000	.774	1.00	.691	.714	.000	.772	.688	.667	.667	,000	.856	.912
Lights	40	46	31	0	117	28	78	19	0	125	4	47	20	0	71	32	48	8	0	88	401
% Lights	95.2	97.9	93.9	0	95.9	96.6	97.5	90.5	0	96.2	100	100	100	0	100	97.0	100	100	0	98.9	97.3
Buses	1	0	0	0	1	0	2	1	0	3	0	0	0	0	0	1	0	0	0	_ 1	5
% Buses	2.4	0	0	0	8.0	0	2.5	4.8	0	2.3	0	0	0	0	0	3.0	0	0	0	1.1	1.2
Trucks	1	1	2	0	4	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	6
% Trucks	2.4	2.1	6.1	0	3.3	3.4	0	4.8	0	1.5	0	0	0	0	0	0	0	0	0	0	1.5
Peak Hour A	nalysis	From	12:00	PM to	05:45 P	M - Pe	ak 1 o	f 1													
Peak Hour fo	r Entire	e Inter	section	Begin	s at 04:	45 PM									1	0				20	400
04:45 PM	15	9	19	0	43	2	26	15	0	43	7	21	10	0	38	12	23	1	0	36	160
05:00 PM	13	6	11	0	30	3	21	12	0	36	2	19	3	0	24	9	20	0	-0	29	119
05:15 PM	13	10	7	0	30	6	28	12	0	46	3	15	8	0	26	11	14	0	0	25	127
05:30 PM	12	13	17	0	42	7	28	3	0	38	4	19	6	0	29	7	26	0	0	33	142
Total Volume	53	38	54	0	145	18	103	42	0	163	16	74	27	0	117	39	83	1	0	123	548
% App. Total	36.6	26.2	37.2	0		11	63.2	25.8	0		13.7	63.2	23.1	0		31.7	67.5	0.8	0		050
PHF	.883	.731	.711	.000	.843	.643	.920	.700	.000	.886	.571	.881	.675	.000	.770	.813	.798	.250	.000	.854	.856
Lights	53	38	54	0	145	18	102	42	0	162	16	74	27	0	117	39	83	1	0	123	547
% Lights	100	100	100	0	100	100	99.0	100	0	99.4	100	100	100	0	100	100	100	100	0	100	99.8
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Buses	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trucks	Ö	ŏ	Ö	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
% Trucks	ő	õ	Ö	ō	0	o	1.0	0	0	0.6	0	0	0	0	0	0	0	0	0	0	0.2
70 TTGGRO		•	•	-	•																

Radnor Township School District 2022-2023

Instructional Calendar School Board Approved 2/22/2022

REVISED Calendar School Board Approved 4/25/2023

		JU	LY 20	22		
S	M	T	W	T	F	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						
		_	UST :			
S	M	1	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	<u> </u>			
		FDEE	V 1.7.2	200		
S	M	T I	W	202 T	2. F	S
-	741	<u> </u>		$\dot{\Lambda}$	1	3
4	(3)	<u>>6></u>	7	8	9	10
11	12	13	14	15	16	17
18	19	20	2	22	23	24
25	A	27	28	29	30	
	PA					
		OCTO	DBER	2022		
S	M	OCTO T	OBER W	2022 T	F	S
S	_		W		F	S
2	_					1 8
	M 3 10	T	W	T	F	1
2	M	4	w A	6	7 14 21	1 8
2 9	M 3 10	4	W 12	6 13	7 14	1 8 15
2 9 16	3 10 17 24 31	4 11 18 25	12 26	6 13 20 27	7 14 21 28	1 8 15 22
2 9 16 23 30	3 10 17 24 31	4 11 18 25	12 26	6 13 20 27	7 14 21 28	1 8 15 22 29
2 9 16 23	3 10 17 24 31	4 11 18 25 OVE	12 26	6 13 20 27 R 202 T	7 14 21 28 2 F	1 8 15 22 29
2 9 16 23 30	3 10 17 24 31 N	4 11 18 25 OVE T	26 MBEF W 2	6 13 20 27 ? 202 T 3	7 14 21 28 2 F 4	1 8 15 22 29 s 5
2 9 16 23 30 s	3 10 17 24 31 N M	4 11 18 25 OVE T 1	26 MBET W 2	6 13 20 27 R 202 T 3 10	7 14 21 28 2 F 4	1 8 15 22 29 S 5 12
2 9 16 23 30 S 6	3 10 17 24 31 N M	4 11 18 25 OVE T 1 15	12 26 MBE W 2 9	6 13 20 27 T 3 10	7 14 21 28 2 F 4 11 18	1 8 15 22 29 S 5 12
2 9 16 23 30 S 6 13	3 10 17 24 31 N M 7	1 18 25 OVE 1 1 8 15 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12 26 MBE W 2 9 16	6 13 20 27 R 202 T 3 10	7 14 21 28 2 F 4	1 8 15 22 29 S 5 12
2 9 16 23 30 S 6	3 10 17 24 31 N M	4 11 18 25 OVE T 1 15	12 26 MBE W 2 9	6 13 20 27 T 3 10	7 14 21 28 2 F 4 11 18	1 8 15 22 29 S 5 12
2 9 16 23 30 S 6 13	3 10 17 24 31 N M 7 14	1 1 18 25 OVE 1 1 1 8 15 29	2 9 16	T 6 13 20 27 T 3 10 € 24	7 14 21 28 2 F 4 11 18 2 5	1 8 15 22 29 S 5 12 19
2 9 16 23 30 S 6 13	3 10 17 24 31 N M 7 14	1 1 18 25 OVE 1 1 1 8 15 29	2 9 16	6 13 20 27 T 3 10	7 14 21 28 F 4 11 18 25	1 8 15 22 29 S 5 12 19
2 9 16 23 30 s 6 13 20 27	3 10 17 24 31 N M 7 14 28	1 4 11 18 25 OVE 1 1	26 MBEE W 2 9 16	7 6 13 20 27 7 3 10 \$\frac{2}{2}\$	7 14 21 28 2 F 4 11 18 25 25 2	1 8 15 22 29 s 5 12 19 26
2 9 16 23 30 s 6 13 20 27	3 10 17 24 31 N M 7 14 28	1 4 11 18 25 OVE 1 1	26 MBEE W 2 9 16	T 6 13 20 27 T 3 10 € 24 202 T T	7 14 21 28 2 F 4 11 18 25 2 F	1 8 15 22 29 S 5 12 19 26 S
2 9 16 23 30 s 6 13 20 27	3 10 17 24 31 N M 7 14 28	1 1 18 25 VECE 1 1 29 VECE 1	26 MBEF W 2 9 16 23 30	T 6 6 13 20 27 T 3 10 € 24 T 1	7 14 21 28 2 F 4 11 18 25 2 F 2 2 F 2 2 F 2	1 8 15 22 29 5 5 12 19 26
2 9 16 23 30 s s 6 13 20 27	3 10 17 24 31 N M 7 14 28	1 4 11 18 25 VE T 1	12 26 W 2 9 16 23 30	T 6 13 20 27 T 3 10 € 24 T 1 8	F 7 14 21 28 2 F 4 11 18 25 F 2 2 F 2	1 8 15 22 29 5 5 12 19 26 s 3 10
2 9 16 23 30 s s 6 13 20 27 s	3 10 17 24 31 N M 7 14 28 D M	T 4 11 18 25 OVE T 1 A 15 DECE T 1 6 13	12 26 W 2 9 16 23 30 W 7	T 6 13 20 27 T 3 10	F 7 14 21 28 2 F 4 11 18 25 2 F 2 4 16	1 8 15 22 29 5 12 19 26 s 3 10

JUL 4	District Holiday All Buildings Closed
AUG 15	PIAA High School Sports
	begin
AUG 24-25	Teacher Induction
AUG 29-SEP 1	
SEP 2	Teacher Flex In-Service [^] No Students K-12
SEP 5	District Holiday All Buildings Closed
SEP 6	First Student Day K-12
SEP 21	2 Hour Delay Teacher In-Service Late Start I K-12
SEP 26	Offices Open/No School
OCT 5	Offices Open/No School
OCT 19	2 Hour Delay Teacher In-Service Late Start K-12
NOV8	Teacher In-Service ^ No Students K-12
NOV 17, 21, 22	Evening Parent Full Student Day
NOVICE	Conferences 6-12
NOV 21	Evening Parent Full Student Day Conferences K-5
NOV 22	Parent Conferences K-5 No Students K-5
NOV 22	Parent Conferences K-12 [^] No Students K-12
NOV 24-25	District Holiday All Buildings Closed
DEC 9	Assessment Day K-5 No Students K-5
DEC 14	2 Hour Delay Teacher In-Service Late Start K-12
DEC 23	Teacher Flex In-Service [^] No Students K-12
DEC 26-27 O	District Holiday All Buildings Closed
DEC 28	Offices Open/No School No Students K-12
DEC 29-JAN2	District Holiday All Buildings Closed
JAN 16	District Holiday All Buildings Closed
FEB 15	2 Hour Delay Teacher In-Service Late Start K-12
FEB 20	District Holiday All Buildings Closed
MAR 10	Assessment Day K-5 No Students K-5
MAR 16	Evening Parent
~	Conferences K-5 Full Student Day
MAR 17 /	2 Hour Delay Teacher In-Service Late Start 6-12
MAR 17	Parent Conferences K-5 No Students K-5
APR 3-6	Offices Open/No School No Students K-12
APR 7	District Holiday All Buildings Closed
APR 21	Teacher In-Service^ No Students K-12
May 16 🛆	Teacher In-Service^ No Students K-12
MAY 29 O	District Holiday All Buildings Closed
JUN 7	
JUN 9	Assessment Day K-5 No Students K-5
JUN 15	Last Student Day / Early Dismissal (K-12) Teacher In-Service No Students K-12
JUN 16	
JUN 19	District Holiday All Buildings Closed
	A CT OO D
	^Proposed ACT 80 Days
	PSSA Testing Window
	April 24-28: English Language Arts (3-8)
	May 1 – 12: Mathematics (3-8)
	May 1 -12: Science (3-8) Keystone Testing Window
	Winter: December 5-16
	Spring: May 15-26
	Radnor High School Testing Window*
	Midterms: Jan 25-27
	Senior Finals: May 31, June 1 & 2
Underela	ssmen Finals: TBD based on Emergency Closure Days
	inal testing dates may be adjusted due to weather emergency days.
א mratorini כחא	mai testing dates may be adjusted due to weather emergency days.

The revised 2022-2023 calendar has removed the three built-in emergency school closure days. If emergency school closure days are needed, additional school days will be added onto the end of the school year beginning June 16.

Student Emergency Make-Up Days

Canceled student days will be made up as follows:
Day 4: June 16
Day 5: June 20
Day 7: June 22

		JANL	JARY	2023	3	
S	M	T	W	T	F	S
ī	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
	-	EBR	JARY	202	3	
S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				
				2023 T	F	ę
S	M	T	W	2	3	4
5	6	7	8	9	0	11
12	13	14	15	(~	18
19	20	21	22	23	24	25
_	27	28	29	30	31	20
26	21	20	29	30	31	-
	-	AP	RIL 2	023		
S	М	AP T	RIL 2 W	023 T	F	S
	M					1
2	众	T A	w 公	T A	7	1
2 9	10	11	W	13	14	1 8 15
2 9 16	10	11 18	12 19	13 20	14	1 8 15 22
2 9 16 23	10	11	W	13	14	1 8 15
2 9 16	10	11 18 25	12 19 26	13 20 27	14	1 8 15 22
2 9 16 23 30	10 17 24	11 18 25	12 19 26	13 20 27	14 28	1 8 15 22 29
2 9 16 23	10	11 18 25 M.	12 19 26 AY 2 W	13 20 27	14 28 F	1 8 15 22 29 \$
2 9 16 23 30	10 17 24	11 18 25	12 19 26 AY 2 W	13 20 27 023 1 4	14 28 F 5	1 8 15 22 29 S 6
2 9 16 23 30 S	10 17 24 M 1 8	11 18 25 M. T 2	12 19 26 AY 2 W 3 10	13 20 27 023 1 4 11	14 28 F	1 8 15 22 29 S 6 13
2 9 16 23 30 S	10 17 24 M 1 8 15	11 18 25 M. T 2 9	12 19 26 AY 2 W 3 10	13 20 27 023 1 4 11 18	14 28 F 5 12	1 8 15 22 29 S 6 13 20
2 9 16 23 30 S 7 14 21	10 17 24 M 1 8 15 22	11 18 25 M T 2 9	12 19 26 AY 2 W 3 10 17 24	13 20 27 023 1 4 11	14 28 F 5	1 8 15 22 29 S 6 13
2 9 16 23 30 S	10 17 24 M 1 8 15	11 18 25 M. T 2 9	12 19 26 AY 2 W 3 10	13 20 27 023 1 4 11 18	14 28 F 5 12	1 8 15 22 29 S 6 13 20
2 9 16 23 30 S 7 14 21	10 17 24 M 1 8 15 22	11 18 25 M 1 2 9 A 23 30	12 19 26 AY 2 W 3 10 17 24	13 20 27 023 1 4 11 18 25	14 28 F 5 12	1 8 15 22 29 S 6 13 20
2 9 16 23 30 S 7 14 21	10 17 24 M 1 8 15 22	11 18 25 M 1 2 9 A 23 30	12 19 26 AY 2 W 3 10 17 24 31	13 20 27 023 1 4 11 18 25	14 28 5 12 19 26	1 8 15 22 29 5 6 13 20 27
2 9 16 23 30 S 7 14 21 28	10 17 24 1 8 15 22	11 18 25 M T 2 9 A 23 30	12 19 26 AY 2 W 3 10 17 24 31	13 20 27 023 1 18 25 023 1	14 28 F 5 12 19 26	1 8 15 22 29 5 6 13 20 27
2 9 16 23 30 S 7 14 21 28	10 17 24 M 1 8 15 22 29 M	11 18 25 M T 2 9	12 19 26 AY 2 W 3 10 17 24 31 NE 2	13 20 27 023 1 4 11 18 25 023 1 1 1 8	14 28 F 5 12 19 26	1 8 15 22 29 \$ 6 13 20 27 \$ \$ 3
2 9 16 23 30 S 7 14 21 28	10 17 24 1 8 15 22 29 M	11 18 25 M T 2 9 A 30 JU T 6 6 13	12 19 26 AY 2 W 3 10 17 24 31	13 20 27 023 1 4 111 18 25 023 1 1 8	14 28 F 5 12 19 26	1 8 15 22 29 6 13 20 27 \$ \$ 3 10
2 9 16 23 30 S 7 14 21 28 S	10 17 24 M 1 8 15 22 29 M	11 18 25 M T 2 9	12 19 26 AY 2 W 3 10 17 24 31 NE 2	13 20 27 023 1 18 25 023 1 1 8	14 28 5 12 19 26	1 8 15 22 29 \$ 6 13 20 27 \$ \$ 3
2 9 16 23 30 S 7 14 21 28 S	10 17 24 1 8 15 22 29 M	11 18 25 M T 2 9 A 30 JU T 6 6 13	12 19 26 AY 2 W 3 10 17 24 31 NE 2 W	13 20 27 023 1 4 111 18 25 023 1 1 8	14 28 5 12 19 26	1 8 15 22 29 6 13 20 27 \$ \$ 3 10

RADNOR TOWNSHIP SCHOOL DISTRICT 2022-2023 SCHOOL CALENDAR

	District Holiday	
>	1/3 day early dismissal 6-12 ONLY	
/	1/4 day PM early dismissal K-12	
	K-12 Teacher In-service	
0	K-5 Teacher In-service	
0	Parent Teacher Conferences	
5.7	Offices Open/No School	
(7	Parent Conferences	
/	K-12 Early Dismissal	
	Graduation	
Ŭ	Student Weather Emergency Make-Up Day	
2	First Student Day K-12	

END OF MARKING PERIOD (MP)

MIDDLE SCHOOL	HIGH SCHOOL
MP1: 11/11/2022	MP1: 11/11/2022
MP2: 1/27/2023	MP2: 1/27/2023
MP3: 4/14/2023	MP3: 4/14/2023
MP4: 6/15/2023	MP4: 6/15/2023
	MP1: 11/11/2022 MP2: 1/27/2023 MP3: 4/14/2023

2022—Calendar—2023

NOTE: First full day for ALL students Gr. 1 - 12: August 29, 2022; 1st day for Kindergarten students: September 6, 2022 Tentative Last Day for students: June 14, 2023 (1/2 day) No Kindergarten students report Tentative Last Teacher Day: June 16, 2023

ſ		ΑĬ	JGU	TZ					SEP'	ГЕМ	BEI	3				OC	TOE	BER					NC	VEN	ИВЕ	R	
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					$\overline{\mathbb{A}}$	A	3							1			1	2	3	4	5
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	(8)	9	10	11	12
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19
21	22	23	(24)	(25)	(26)	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	<u> </u>	23	24	25	26
28	29	βQ	M	_	_		25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30			
	_	_												30	31												
		DEC	EMI	3ER					JAN	ΛŪΑ	RY					FEB	RU	RY					N	//AR	CH		
S	M		W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T_	F	S	S	M	<u>T</u>	W	T	F	<u>S</u>
				1	2	3	1	2	3	4	5	6	7				1	2	3	4				1	2	3	4
4	5	6	7	8	9	10	8	9	10	11	12	13	14	5	6	7	8	9	10	11	5	6	7	8	9	10	11
11	12	13	14		16	17	15	16	17	18	19	20	21	12	13	14	15	16	17	18	12	13	14	15	16	17)	18
18	19	20	21	22	23	24	22	23	24	25	26	27	28	19	20	21	22	28		25	19	20	21	22	23	24	25
25	26	27	28	29	30	31	29	30	31					26	27	28					26	27	28	29	30	31	
		A	PRI	ī.					۱	ИAY	7					J	UNI	Ξ			M	IS/H	S M	arkiı	ng P	erio	ds
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T		T	F	S					0		
						1		1	2	3	4	5	6	9				1	2	3	Au	gust :	29- N	lov.	1	47 D	ays
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	No	v. 7 -	Jan.	20		42 D	ays
9	10	11	12	13	14	15	14	15	(16)	17	18	19	20	11	12	13	4	15	16)	17	Jan	. 23 -	- Ma	rch 3	1	.48 E	ays
16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	<u>20</u>	<u>21</u>	22	23	24	Apı	ril 10	- Ju	ne 14	4	.45 E	ays
23	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30								
30																											

K E Y	Rescheduled student days for use in the event of emergency closings.			
= No School	Day 1	June 14, 2023		
= Kindergarten Screening & Parent Conferences, no Kindergarten	Day 2	FID (Dec.23,2022)		
= 1/2 Day: Elem. Parent Conferences, Gr. 1-4, no Kindergarten	Day 3-6	FIDs		
= 1/2 Day: Elementary / MS Parent Conferences, Gr. 1-8, no Kindergarten	Day 7	June 15, 2023		
= Districtwide Parent Conference Day, no school for students	Day 8	June 16, 2023		
New Teacher Inservice, no school for students	Day 9	June 20, 2023		
= Instr. Staff Inservice, no school for students	Day 10	June 21, 2023		
= 1/2 Day for Gr. 1-12, no Kindergarten/ 1/2 Day Staff Inservice		,		
 Rescheduled days for emergency closings as per the list on this calendar. If needed, rescheduled days could extend until June 30. No School: Emergency Closing 				

Defined by the PA School Code as days that will not be used as make up for emergency closings.

APPENDIX E

Trip Generation, Background Growth & Other Developments

Land Use: 215 Single-Family Attached Housing

Description

Single-family attached housing includes any single-family housing unit that shares a wall with an adjoining dwelling unit, whether the walls are for living space, a vehicle garage, or storage space.

Additional Data

The database for this land use includes duplexes (defined as a single structure with two distinct dwelling units, typically joined side-by-side and each with at least one outside entrance) and townhouses/rowhouses (defined as a single structure with three or more distinct dwelling units, joined side-by-side in a row and each with an outside entrance).

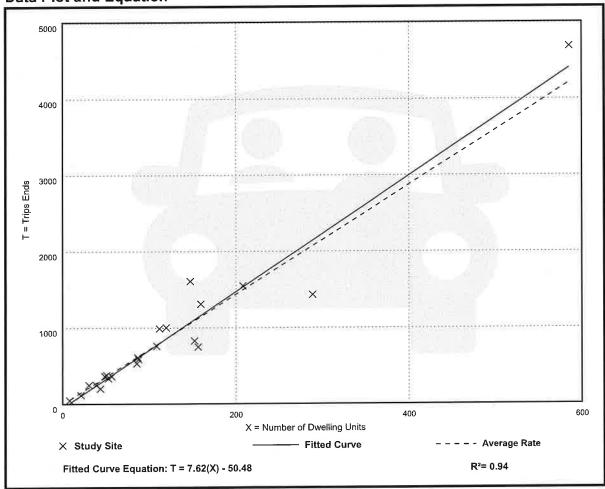
The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in British Columbia (CAN), California, Georgia, Illinois, Maryland, Massachusetts, Minnesota, New Jersey, Ontario (CAN), Oregon, Pennsylvania, South Dakota, Utah, Virginia, and Wisconsin.

Source Numbers

168, 204, 211, 237, 305, 306, 319, 321, 357, 390, 418, 525, 571, 583, 638, 735, 868, 869, 870, 896, 912, 959, 1009, 1046, 1056, 1058, 1077

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 22 Avg. Num. of Dwelling Units: 120

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

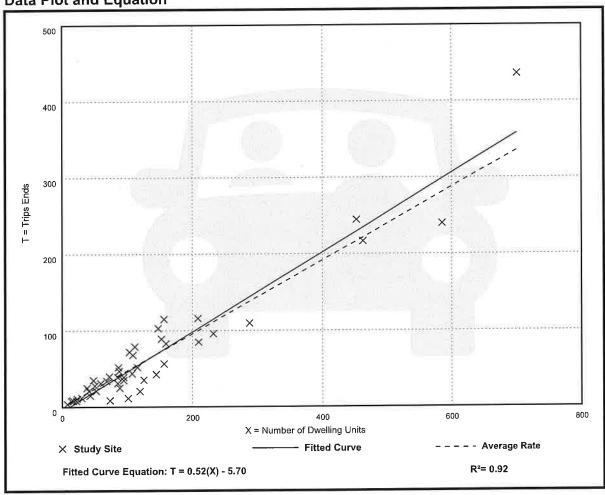
Average Rate	Range of Rates	Standard Deviation
7.20	4.70 - 10.97	1.61

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 46 Avg. Num. of Dwelling Units: 135

Directional Distribution: 31% entering, 69% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.48	0.12 - 0.74	0.14

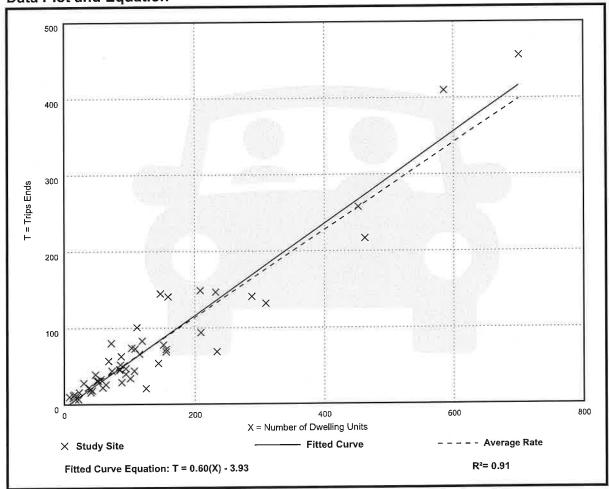
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 51

Avg. Num. of Dwelling Units: 136

Directional Distribution: 57% entering, 43% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Average Rate Range of Rates	
0.57	0.17 - 1.25	0.18

Walk+Bike+Transit Trip Ends vs: Dwelling Units

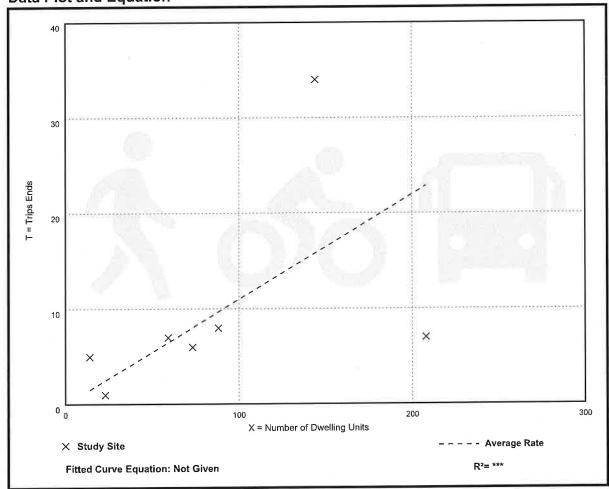
On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 7


Avg. Num. of Dwelling Units: 87

Directional Distribution: 75% entering, 25% exiting

Walk+Bike+Transit Trip Generation per Dwelling Unit

Average Rate		
0.11	0.03 - 0.36	0.09

Data Plot and Equation

250

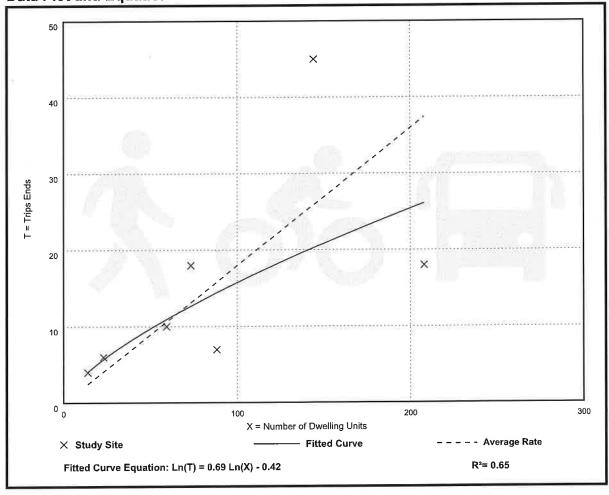
Walk+Bike+Transit Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 7

Avg. Num. of Dwelling Units: 87

Directional Distribution: 38% entering, 62% exiting

Walk+Bike+Transit Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.18	0.08 - 0.31	0.11

	Growth F	actors for August 202	22 to July 2023	
County	Urban Interstate	Rural Interstate	Urban Non-Interstate	Rural Non-Interstate
ADAMS		*	0.50	0.60
ALLEGHENY	0.98		0.00	0.43
ARMSTRONG	0.80	**	0.00	0.37
BEAVER	0.64	2.05	0.00	0.30
BEDFORD	*	2,20	0.00	0.39
BERKS	1.34	2.53	0.32	0.58
BLAIR	0.86	2.34	0.00	0.40
BRADFORD	1,06	•	0.00	0.48
BUCKS	1.35	2.63	0.22	0.58
BUTLER	1,66	2,88	0.29	0,71
CAMBRIA	0.35		0.00	0.19
CAMERON	•	•		0.12
CARBON	1.42	2.68	0.28	0.60
CENTRE	1,79	2.75	0.72	0.74
CHESTER	1.77	2.92	0.54	0.77
	0.79	2.23	0.00	0.37
CLARION	0.61	1,94	0.00	0.31
CLEARFIELD		2.36	0.02	0.48
CLINTON	1.10	2.32	0.02	0.48
COLUMBIA	1.10		0.00	0.36
CRAWFORD	0.74	2.12	0.59	0.69
CUMBERLAND	1.63	2.79		0.66
DAUPHIN	1.54	*	0.35	0.00
DELAWARE	1.27		0.00	
ELK			0.00	0.30
ERIE	0.96	2.31	0.00	0.43
FAYETTE	0.86	(*)	0.00	0.39
FOREST	*		•	0.96
FRANKLIN	1.71	2.81	0.73	0.72
FULTON	*	2.33		0.50
GREENE	0.73	2.28	0.00	0.36
HUNTINGDON		2.49	0.00	0.49
INDIANA	0.94	•	0.00	0.44
JEFFERSON	*	2,32	0.00	0.46
JUNIATA	•	·		0,53
LACKAWANNA	0.99	2.36	0.00	0.44
LANCASTER	1.66	2.84	0.60	0.70
	0.69	2,18	0.00	0.33
LAWRENCE	0.09	2.55	0.48	0.62
LEBANON		3.09	0.53	0.75
LEHIGH	1.75	2.41	0.00	0.47
LUZERNE	1.04		0.00	0.44
LYCOMING	0.99	2.37		0.30
MCKEAN	0.60		0.00	0.43
MERCER	0.92	2.52	0.00	
MIFFLIN	1.17	*	0.00	0.51
MONROE	1.77	2.88	0.79	0.75
MONTGOMERY	1.29		0.27	0.55
MONTOUR	1.30	2.68	0.00	0.57
NORTHAMPTON	1.80	3,16	0.47	0.78
NORTHUMBERLAND	1.00	2.28	0.00	0.43
PERRY	*		0.24	0.54
PHILADELPHIA	1.18	(#)	0.05	*
PIKE	1.72	2.72	0.86	0.73
POTTER	*	3₩2	*	0.35
SCHUYLKILL	1.00	2.45	0.00	0.45
SNYDER	1.23	*	0.21	0.54
SOMERSET	0.60	2.06	0.00	0.34
SULLIVAN	*	(O.)	*	0.37
SUSQUEHANNA	1,09	2.43	0.00	0,47
	1.09	2.43	0.00	0.42
TIOGA			0.44	0.63
UNION	1.54	2.68		0.03
VENANGO	**	1.91	0.00	0.35
WARREN	*	•	0.00	
WASHINGTON	1.22	2.74	0.00	0.55
WAYNE	167:	2.53	0.31	0,58
WESTMORELAND	0.89	2.18	0.00	0.40
WYOMING	*		0.00	0.44
YORK	1.57	2.89	0.47	0.69

^{* =} Functional Class Doesn't Exist in County

Questions? Please contact Andrew O'Neill at the Bureau of Planning and Research, 717-346-3250 or andoneill@pa.gov

NOTE: The projected growth factors are derived using historical VMT (Vehicle Miles Traveled) data (1994 to 2021), as well as Woods and Poole demographic and economic data. The factors should be compounded when calculating future values. The factors should not be used to project traffic beyond a 20-year period. Please be aware that these factors are estimates, and unforeseen events (opening of shopping centers, fast food franchises, gas stations, etc) could cause growth to change over time.

F. Tavani and Associates, Inc.

Traffic Engineering and Planning

14 September 2022

Cas Holloway, III C.F. Holloway, III & Company 110 Gallagher Road Wayne, PA 19087

VIA EMAIL ONLY

RE: Traffic Engineering Investigations of St. Honoré (Eagle Road) 14-unit SFDU Site Radnor Township, Delaware County, PA

FTA Job #219-011

Mr. Holloway:

F. Tavani and Associates, Inc. (FTA) has conducted traffic engineering investigations for the above-referenced project in Strafford. As you know, FTA formerly studied this site for Haverford Properties in 2020. At that time, a 9-unit development was proposed, and a report was prepared in accordance with Radnor code requirements and followed the recommended outline as identified in said ordinance. The site now contains 14 units and FTA has updated the 2020 report to reflect this change, per our discussions.

GENERAL SITE DESCRIPTION

This study considers the traffic impact of a proposed single family detached community of 14 units. The housing is proposed to be for sale and will feature a mix of mainly 4 and 5 bedrooms. The housing is proposed to be market-rate and not age-restricted. The process of entitlements, construction, and occupancy is expected to take 2-3 years. The site is immediately surrounded by other residential properties and, beyond them, there is a mix of office and retail buildings within a 1 mile radius of the site. Ample mass transit opportunities are also within a short distance of the site.

The site was previously contemplated as 9 units, all of which were proposed to access a new cul-de-sac whose driveway would intersect Eagle Road just north of Strafford Avenue. Additional lots abutting the site have been acquired and are proposed to be redeveloped. One acquired lot is the former Wayne Bed and Breakfast property – a site containing a 7-bedroom B&B building plus a free-standing garage with 1-unit apartment building to the rear of the site. More details about the trip generation implications and proposed access of these acquired lots is presented later.

The site is located on the east side of Strafford Avenue, north of Eagle Road and is known as the Hamilton Estate. Much of the site is presently undeveloped land.

The site location and surrounding area are presented in figures which are attached to the end of this report, namely **Figure 1** and **Figure 2**. A reduced version of a recent site plan for the project is presented as **Figure 3**. There are no other known approved land development projects in the vicinity of the site.

Note that technical appendices are provided following the figures. Appendix A contains some recent project correspondence. Photodocumentation of the study area is provided in Appendix B.

Cas Holloway, III 14 September 2022 Page 2 of 5

TRANSPORTATION FACILITIES DESCRIPTION

The site has frontage on Eagle Road and Strafford Avenue, both existing, two-way, one-lane-perdirection, public roadways. The roadways generally do not feature on-street public parking. Posted speed limit signs are present in the vicinity of the site along both Strafford Avenue and Eagle Road, where the posted speed limit is 25 mph. There are limited sidewalk facilities in the study area. The major intersections closest to the site are all-way stop-controlled intersections with no painted crosswalks. There are existing SEPTA mass transit opportunities near the site including bus route 106 and a regional rail station (Strafford), each of which are within approximately one half mile of the site. No traffic signals (save for a flashing beacon at the all-way stop-controlled intersection of Strafford Avenue and Eagle Road) exist or are proposed in the immediate vicinity of the site. More site driveway and surrounding intersection details can be seen in photodocumentation log as provided in **Appendix B**.

The site has 10 units which are proposed to take access to Eagle Road via a proposed new cul-de-sac. Previously, 9 units were proposed to access the cul-de-sac. As seen in Figure 3, the proposed 10th unit to access the cul-de-sac is annotated with an asterisk. Additionally, recently-acquired lots along Stafford Avenue permit the construction of 4 additional lots all of which will have driveways proposed along Strafford Avenue, similar to existing driveways found on the recently-acquired lots.

The units will feature garage/driveway parking plus undefined visitor parking along the cul-de-sac. Sidewalks are also proposed.

There are no known planned roadway improvements in the vicinity of the site. None of the streets surrounding the site are "SR"s (state roadways) – instead they are all local roadways. Eagle Road is a "G" roadway, meaning it is not an SR but is eligible for liquid fuels funding and PennDOT does maintain traffic count data along it, as seen in **Appendix C**.

EXISTING TRAFFIC CONDITIONS

FTA conducted traffic counts at the intersections of:

- Strafford Avenue and Eagle Road,
- Strafford Avenue and Grant Lane/Hedgerow Lane, and
- Eagle Road and N Wayne Avenue.

The counts were conducted on Thursday, 16 May <u>2019</u> from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM. The counts were conducted during the school year, in fair weather, and on a typical weekday. Existing peak hours of 8:00 AM to 9:00 AM and 4:30 PM to 5:30 PM were selected for study based on a system-wide peak hour investigation. The corresponding existing peak hour traffic volumes are plotted and seen in **Figure 4**. Raw traffic volumes are attached in **Appendix D**, as is a spreadsheet which describes the system peak investigation. Note that the data collection was conducted pre-Covid.

With existing peak hour volumes established, present-day "levels of service" can be assessed. Level of service (or LOS) is a descriptive mechanism which is employed by traffic engineers to relate quality of traffic flow to both a letter grade and estimate of delay in seconds per vehicle. LOS results are assessed for traffic which must stop or yield to other traffic. Free-flowing traffic theoretically has no delay, and therefore no LOS rating. Existing levels of service were determined using *Synchro version 11* software, with HCS 6th edition-format outputs selecting for performance-reporting purposes. A **LOS Comparison Matrix** was prepared and is attached to the end of this report. The matrix summarizes AM and PM peak hour performance for existing and future (see next section) conditions for all intersections. As shown,

Cas Holloway, III 14 September 2022 Page 3 of 5

existing levels of service are all LOS A and B, with all calculated delays being very low (10 seconds or less in most cases – an acceptable condition). No congestion locations (LOS E/F) are noted.

TRANSPORTATION IMPACT OF THE DEVELOPMENT

Site traffic was estimated using the Institute of Transportation Engineers (ITE) publication, Trip Generation, 11th edition. ITE website trip generation outputs are attached and provided in Appendix E. Raw trip generation could have been modified to reflect how this site is located in a setting which is within walking distance of several businesses as well as SEPTA bus route 106 plus the Strafford train station, though no such multimodal credits were taken. Instead, all site traffic was assigned (trip distributed) to the surrounding roadway network in accordance with existing traffic patterns as well as an understanding of existing road network connectivity, current traffic/congestion patterns, and relative locations of major highway interchanges (Interstates 476, 76, 202, and 422 as well as Business Route 30). The assignments are summarized as follows:

- 30% to/from Routes 202 & 422 via Strafford Ave to Old Eagle School Rd;
- 30% to/from Routes 476 & 76 via Eagle Rd to King of Prussia Rd;
- 15% to/from Business Rt 30 West via Eagle Rd and Strafford Ave;
- 15% to/from Business Rt 30 East via Eagle Rd and Strafford Ave, West Ave., and/or Banbury Way; &
- 10% to/from Conestoga Road via Eagle Road.

The trip distribution model for the community is shown in **Figure 5** and the resultant assignment of new, site-generated, vehicular peak hour traffic is shown in **Figure 6**. The trip generation summary table found in the earlier version of this report (for the former 9-unit plan) follows below:

A	M PEAK HO	UR	PM PEAK HOUR			
<u>IN</u>	OUT	TOTAL	IN OUT TOTAL			
3	8	11	6	4	10	

Average daily site traffic was calculated and determined to be approximately 113 trips for the previously-proposed 9-unit site. These numbers of course increase for a 14-unit development. **Table 2** summarizes trip generation for the currently-proposed 14-unit plan:

TABLE 2
PROJECTED VEHICULAR TRIP GENERATION² – 14 SFDUs

AM PEAK HOUR			UR PM PEAK HOUR		
<u>IN</u>	OUT	TOTAL	<u>IN</u>	OUT	TOTAL
3	9	12	10	6	16

Average daily site traffic was calculated and determined to be approximately 165 trips for the proposed 14-unit site. Note that in all cases <u>no</u> credits were taken for the trip generation associated with the 1 single family home and the 7-bedroom bed and breakfast site (plus apartment) which are located along Strafford

² Based on ITE Trip Generation Manual, 11th edition

As presented in 2020 report, based on ITE Trip Generation Manual, 10th edition

Cas Holloway, III 14 September 2022 Page 4 of 5

Avenue and have since been added to the development as shown in Figure 3. Taking a credit (reduction) for these existing buildings is appropriate and ordinarily would have been done, but - in an abundance of conservativeness - \underline{no} credits were taken, and instead the trip generation summarized in Table 2 was distributed throughout the road network for analysis. See Appendix E for more details.

ANALYSIS OF TRANSPORTATION IMPACT

Future traffic conditions are a function of three components: (1) existing traffic volumes, (2) additional traffic due to general background growth as well as other known approved developments in the immediate proximity of the site, and (3) site traffic.

As mentioned earlier, there are no other known approved land development projects in the vicinity of the site. Regarding background growth, the currently promulgated background growth rate for Delaware County is 0.00% per year as reported by PennDOT. This means that future 'no build' traffic volumes and levels of service are identical to existing traffic volumes and levels of service.

The projected future 'build' (no build plus site traffic) peak hour volumes are shown in Figure 7. The related projected levels of service are once shown in LOS Comparison Matrix. As shown projected 'build' levels of service once again remain essentially the same as they are today, and are all LOS B or better. Note that the proposed individual new driveways along Strafford Road were modeled as if their combined activity took place at one hypothetical driveway, effectively quadrupling the activity / impact at one location, which is the most conservative way the driveway could be analyzed. It is important to emphasize again that the analysis also took no credits for multi-modalism or for the existing single family home and the existing 7-bedroom bed and breakfast (plus apartment) sites along Strafford Avenue. Even with this conservative approach, no congestion locations (LOS E/F) are noted and in fact the impact of site traffic is no added delay at all intersections/turning movements (i.e., the impact of site traffic never amounts to any added delay at any impacted turning movement),

No road improvements are necessary to offset the impact of added site traffic. The proposed site driveways will not feature traffic volumes which warrant the installation of a traffic signal. The acceptable operation of the site driveways (LOS A and B) in unsignalized state underscores this conclusion. Level of service worksheets are provided in **Appendix F**.

AUXILIARY LANE ANALYSIS

The need for new auxiliary left- and right-turn lanes at the site driveway was investigated. Investigations were based on PennDOT Strike Off Letter 560-08-4 as well as PennDOT Publication 46 Chapter 11 page 11-46 ("Turn Lane Warrants") using PennDOT-provided worksheets, and focusing on the highest (busiest) peak hour for entering traffic. Investigations conclude that new auxiliary left- and right-turn lanes are not warranted at the cul-de-sac intersection with Eagle Road or at the proposed driveways along Strafford Avenue, and this, again, is the case even while taking no credits for multi-modalism or for the existing single family home and the existing 7-bedroom bed and breakfast (plus apartment) sites. More details are provided in Appendix G.

CONCLUSIONS

As mentioned earlier, a LOS Comparison Matrix is provided to afford a simple means to review and assess site traffic impact in the study area. In locations where levels of service are not forecasted to change from one scenario to the next (i.e., from Existing to No Build, or from No Build to Build), hyphens are used. As shown, there are many instances in which the impact of site traffic results in 55 Cas Holloway, III 14 September 2022 Page 5 of 5

<u>essentially no measurable change in traffic performance</u> and the underlying traffic performance is already acceptable, and with very low delays.

Other key conclusions are as follows:

- The study area is presently well-served by transit opportunities.
- There are no streets or intersections operating below LOS C under existing or future conditions.
- The site driveways are forecasted to operate at LOS A/B during both peak hours, and for all turning movements.
- The site driveways do not require new left-turn or right-turn auxiliary lanes per investigations using standard PennDOT tools.
- The foregoing conclusions were reached taking <u>no</u> credits for:
 - o walking,
 - o transit usage, or
 - o the existing single family home and the existing 7-bedroom bed and breakfast (plus apartment) sites along Strafford Avenue.

In closing it is important to again emphasize that the only change between what Haverford Properties had proposed previously and what is proposed now is a net increase of 3 new homes -1 additional home on the cul-de-sac and 2 net new homes on Strafford Avenue. Because of this, and as expected, the findings and conclusions of this report are not meaningfully different from the earlier report.

I hope this has been helpful. Please let me know if I can answer any questions.

Thank you,

ASSOCIATE

(RANK

attachments

cc: Mike Bowker, P.E.

LEVEL OF SERVICE COMPARISON TABLES

		1. Straff	ford Ave & Gran	nt Ln / Hedger	ow Ln		
Direction	Movement	AM Peak Hour				PM Peak Hour	
Strafford	Ave	Existing (2019)	No Build (2024)	Build (2024)	Existing (2019)	No Build (2024)	Build (2024)
Eastbound	LTR	A 8	1000	(4.4)	A 9		150
Westbound	LTR	A 9	3 50 41		A 8		
Grant Ln / Hed	lgerow Ln						
Northbound	LTR	A 8			A 7	92	144
Southbound	LTR	A 8	Yang	=	A 7	(##C	•
OVERALL: A 9		1000		A 9		77	

Control Type: AWSC

		2	2. Strafford Ave	& Eagle Ave			
Direction	Movement		AM Peak Hour			PM Peak Hour	
Strafford	Ave	Existing (2019)	No Build (2024)	Build (2024)	Existing (2019)	No Build (2024)	Build (2024
Eastbound	LTR	A 10	<u>42</u> 7	===	B 11	-	
Westbound	LTR	A 9		:ee.	B 10	ien.	-
Eagle A	ve						
Northbound	LTR	A 9	TE!	100	B 11		44.
Southbound	LTR	A 10	**		B 11		(44)
OVERALL:		A 9	##:	(444)	B 11		8

Control Type: AWSC

		3	3. N Wayne Ave	& Eagle Ave			
Direction	Movement		AM Peak Hour			PM Peak Hour	
N Wayne	Ave	Existing (2019)	No Build (2024)	Build (2024)	Existing (2019)	No Build (2024)	Build (2024)
Eastbound	LTR	A 4	#	-	A 5	124	10
Westbound	LTR	A 3		(44	A 5	195	655
Eagle A	ve					<u></u>	
Northbound	LTR	B 20	=	: 55	B 20	, 1	**
Southbound	LTR	В 19	-	Æ	B 20		-
OVERALL: A		A 8	221	134	B 10	He .	##ES

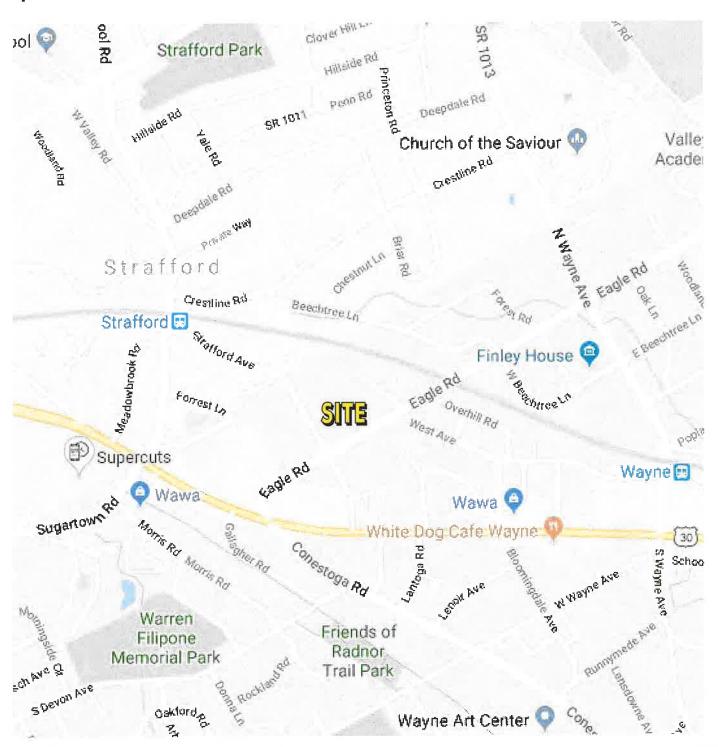
Control Type: Signal

			4. Eagle Ave 8	Site Drive			
Direction	Movement	AM Peak Hour			PM Peak Hour		
Site Drive		Existing (2019)	No Build (2024)	Build (2024)	Existing (2019)	No Build (2024)	Build (2024
Eastbound	LR			A 10			B 11
Eagle A	ve						
Southbound	L			A 8			A 8
OVERALL:		79 70 Lag		A 1			A 1

Control Type: TWSC

		į	5. Strafford Ave	& Site Drive				
Direction	Movement		AM Peak Hour		PM Peak Hour			
Site Drive		Existing (2019)	No Build (2024)	Build (2024)	Existing (2019)	No Build (2024)	Build (2024)	
Southbound	LR			B 10	100 C 100	aut 55	B 10	
Strafford	Ave							
Eastbound	L			A 8			A 8	
OVERALL:				A 1			A 1	

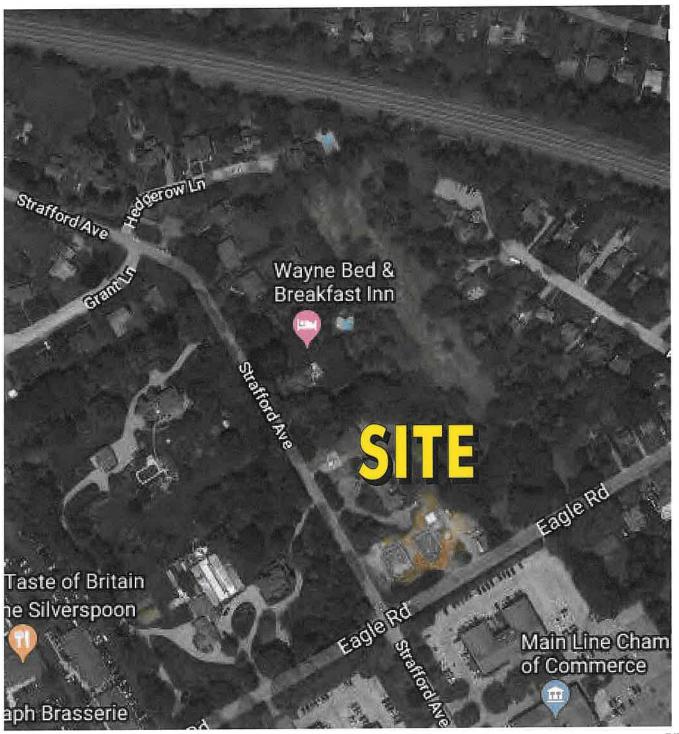
Control Type: TWSC



Site and Surrounding Area - Map View

Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania

September 2022*


^{*} Figure preparation date. See report for data collection date(s).

Site and Surrounding Area - Aerial View

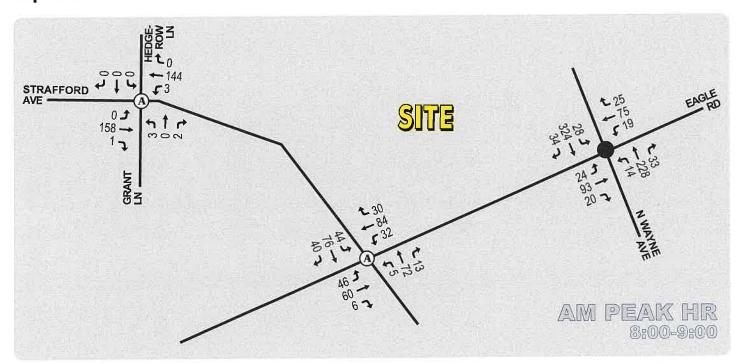
Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania

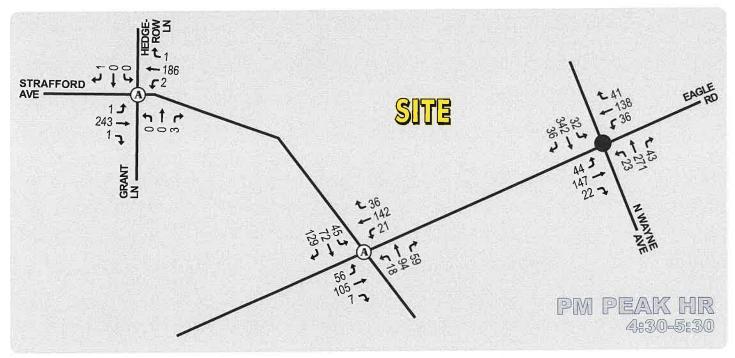
Site Plan Excerpt

Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania

September 2022

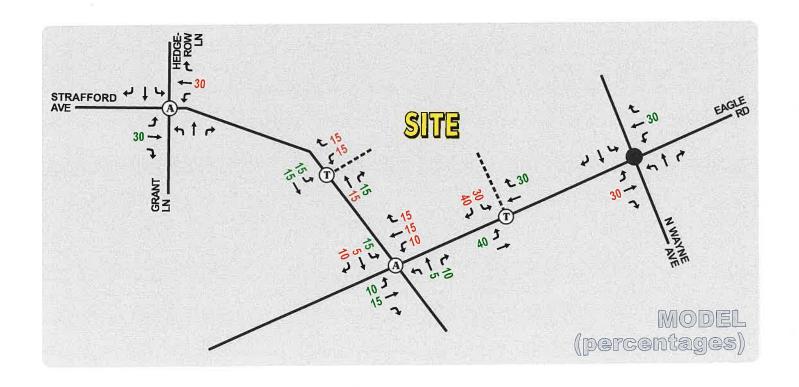
Existing 7-bed + 1 apt Bed & Breakfast site


* Units added since last traffic study



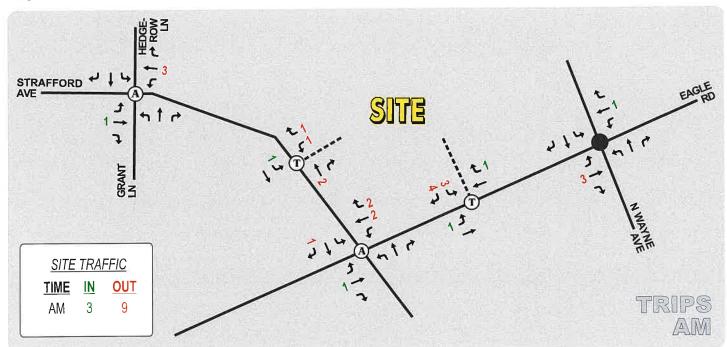
Existing (2019) Peak Hour Traffic Volumes

Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania



Site Peak Hour Traffic - Model

Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania





Site Peak Hour Traffic - Volumes

Strafford Avenue Residential - SFDUs Radnor Township, Delaware County, Pennsylvania

APPENDIX F Capacity Analyses

·	•	→	*	•	←	4	4	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	12	86	25	20	87	17	19	160	14	25	333	36
Future Volume (vph)	12	86	25	20	87	17	19	160	14	25	333	36
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	14	14	14	16	16	16	11	11	11
Grade (%)		-2%	اثرها		-1%			0%			-5%	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.973			0.982	- E W		0.990			0.988	
Flt Protected		0.995			0.992			0.995			0.997	
Satd. Flow (prot)	0	1690	0	0	1782	0	0	1977	0	0	1695	0
Flt Permitted		0.968			0.947	-		0.952			0.978	
Satd. Flow (perm)	0	1644	0	0	1701	0	0	1891	0	0	1663	0
Right Turn on Red	U	דדטו	No		1101	Yes			Yes			Yes
Satd. Flow (RTOR)			140		14	= 5.05		10	ARIJA A		12	-
		25			25			25			25	
Link Speed (mph)		2785		7. E 1. 1	863			613			617	
Link Distance (ft)		76.0			23.5			16.7			16.8	
Travel Time (s)	0.00		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0.92	0.92					0.92	2%	0.92	4%	4%	0.52
Heavy Vehicles (%)	0%	1%	0%	20%	2%	6%		174	15	27	362	39
Adj. Flow (vph)	13	93	27	22	95	18	21	174	15	21	302	39
Shared Lane Traffic (%)		400			405	0	0	040	0	0	400	0
Lane Group Flow (vph)	0	133	0	0	135	0	0	210	0	0	428	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												4.00
Headway Factor	1.11	1.11	1.11	0.98	0.98	0.98	0.91	0.91	0.91	1.08	1.08	1.08
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	40		20	40		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	40		20	40		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	UE SET I							94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type				41.0				CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	CHIL	4		1 01111	8		1 31111	2		W 4	6	
Permitted Phases	4	1		8	U		2			6		
remilled Fhases	4			0								

	*	-	*	•	←	*	1	†	-	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	3.0	3.0		3.0	3.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Total Split (s)	25.0	25.0		25.0	25.0		37.0	37.0		37.0	37.0	
Total Split (%)	40.3%	40.3%		40.3%	40.3%		59.7%	59.7%		59.7%	59.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		32.0	32.0		32.0	32.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)		10.4			10.4			36.9			36.9	
Actuated g/C Ratio		0.20			0.20			0.71			0.71	
v/c Ratio		0.41			0.39			0.16			0.36	
Control Delay		21.6			19.2			4.3			5.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		21.6			19.2			4.3			5.7	
LOS		С			В			Α			Α	
Approach Delay		21.6			19.2			4.3			5.7	
Approach LOS		С			В			Α			Α	
Intersection Summary	19 Year	" with the			y Har	W 1			200 11	- 17		
Area Type:	Other											
Cycle Length: 62												
Actuated Cycle Length: 52	2.3											
Natural Cycle: 40												
Control Type: Actuated-Ur	ncoordinated	1										
Maximum v/c Ratio: 0.41												
Intersection Signal Delay:					ntersectio							
Intersection Capacity Utiliz	zation 44.5%			- 4 5	CU Level	of Service	e A					
Analysis Period (min) 15												
Splits and Phases: 1: N	Wayne Ave	& Eagle F	₹d									
↑ Ø2							2 04					
						100	- 					
初5							4					
₩ Ø6							₹ Ø8					

	٨	→	•	•	—	1	1	†	1	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	12	86	25	20	87	17	19	160	14	25	333	36
Future Volume (veh/h)	12	86	25	20	87	17	19	160	14	25	333	36
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1860	1875	1615	1881	1822	1872	1843	1872	1929	1929	1986
Adj Flow Rate, veh/h	13	93	27	22	95	18	21	174	15	27	362	39
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0	1	0	20	2	6	0	2	0	4	4	0
Cap, veh/h	98	179	49	115	185	33	146	1059	86	115	1148	118
Arrive On Green	0.12	0.14	0.12	0.12	0.14	0.12	0.67	0.70	0.67	0.67	0.70	0.67
Sat Flow, veh/h	106	1310	361	200	1355	239	91	1524	124	49	1651	170
Grp Volume(v), veh/h	133	0	0	135	0	0	210	0	0	428	0	0
Grp Sat Flow(s),veh/h/ln	1777	0	- 0	1795	0	0	1739	0	0	1871	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	3.3	0.0	0.0	3.3	0.0	0.0	1.9	0.0	0.0	4.3	0.0	0.0
Prop In Lane	0.10		0.20	0.16		0.13	0.10		0.07	0.06		0.09
Lane Grp Cap(c), veh/h	288	0	0	295	0	0	1255	0	0	1342	0	0
V/C Ratio(X)	0.46	0.00	0.00	0.46	0.00	0.00	0.17	0.00	0.00	0.32	0.00	0.00
Avail Cap(c_a), veh/h	814	0	0	818	0	0	1255	0	0	1342	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.3	0.0	0.0	19.3	0.0	0.0	2.5	0.0	0.0	2.9	0.0	0.0
Incr Delay (d2), s/veh	1.1	0.0	0.0	1.1	0.0	0.0	0.3	0.0	0.0	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.5	0.0	0.0	2.5	0.0	0.0	0.9	0.0	0.0	2.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.4	0.0	0.0	20.4	0.0	0.0	2.8	0.0	0.0	3.5	0.0	0.0
LnGrp LOS	С	Α	A	C	A	A	A	A	A	A	Α	A
Approach Vol, veh/h	-	133			135			210			428	
Approach Delay, s/veh		20.4			20.4			2.8			3.5	
Approach LOS		С		W. Y.	С			Α			Α	
Timer - Assigned Phs	3904	2	Williams.	4	100	6	W	8		V 11 60		oof*
Phs Duration (G+Y+Rc), s	iif	37.0		10.5		37.0		10.5				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		32.0		20.0		32.0		20.0				
Max Q Clear Time (g_c+l1), s		3.9		5.3		6.3		5.3				
Green Ext Time (p_c), s		1.4		0.3		3.0		0.4				
Intersection Summary	orije k	XIII		V///		w. ?' E	- 85 30	181 1	åk in	of kil		N THE
HCM 6th Ctrl Delay			8.3									
HCM 6th LOS			Α									

	>	→	7	1	-	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		4			4			4			की	
Traffic Volume (vph)	33	48	8	29	80	21	4	47	20	42	47	33
Future Volume (vph)	33	48	8	29	80	21	4	47	20	42	47	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	13	13	13	12	12	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988			0.978			0.962			0.964	
FIt Protected		0.982			0.989			0.997			0.983	
Satd. Flow (prot)	0	1763	0	0	1737	0	0	1883	0	0	1729	(
FIt Permitted		0.982			0.989			0.997			0.983	
Satd, Flow (perm)	0	1763	0	0	1737	0	0	1883	0	0	1729	(
Link Speed (mph)		25			25			. 25			25	
Link Distance (ft)		586			2785			417			648	
Travel Time (s)		16.0			76.0			11.4			17.7	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.9
Heavy Vehicles (%)	3%	0%	0%	3%	0%	10%	0%	0%	0%	5%	2%	6%
Adj. Flow (vph)	36	53	9	32	88	23	4	52	22	46	52	36
Shared Lane Traffic (%)		- 4										
Lane Group Flow (vph)	0	98	0	0	143	0	0	78	0	0	134	(
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	N
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.0
Turning Speed (mph)	15		9	15		9	15		9	15		
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary				وسيالي	-1000	1 28	7/1			ALT W		JFS
	ther											
Control Type: Unsignalized												

Intersection		95,56	31 3-1-	-,511		E MEN						
Intersection Delay, s/veh	8.4											
Intersection LOS	Α.											
Intersection Loo	- 1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	33	48	8	29	80	21	4	47	20	42	47	33
Future Vol. veh/h	33	48	8	29	80	21	4	47	20	42	47	33
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	3	0	0	3	0	10	0	0	0	5	2	6
Mymt Flow	36	53	9	32	88	23	4	52	22	46	52	36
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB	ii' wer		NB			SB	- "\"	0.11
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			- 1			1			SCHOOL ST		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	5.1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.3			8.5			8			8.5		
HCM LOS	A			Α			Α			Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1		all the	With Z	i- 12"			
Vol Left, %		6%	37%	22%	34%							
Vol Thru, %		66%	54%	62%	39%							
Vol Right, %		28%	9%	16%	27%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		71	89	130	122							
LT Vol		4	33	29	42				*			
Through Vol		47	48	80	47							
RT Vol		20	8	21	33							
Lane Flow Rate		78	98	143	134							
Geometry Grp		1:	-1	1	1							
Degree of Util (X)		0.097	0.126	0.179	0.169							
Departure Headway (Hd)		4.461	4.626	4.504	4.542							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		803.	775	797	790							
Service Time		2.49	2.654	2.53	2.569							
HCM Lane V/C Ratio		0.097	0.126	0.179	0.17							
HCM Control Delay		8	8.3	8.5	8.5							
HCM Lane LOS		Α	Α	Α	Α							
HCM 95th-tile Q		0.3	0.4	0.6	0.6							

Analysis Period (min) 15

	≯	-	*	1	←	*	4	†	-	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	1	122	2	3	101	0	1	1	7.ne1.	1-1-1	0	0
Future Volume (vph)	1	122	2	3	101	0	1	1	1	1	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	13	13	13	12	12	12	9	9	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998						0.955				
Flt Protected					0.999			0.984			0.950	
Satd. Flow (prot)	0	1764	0	0	1908	0	0	1785	0	0	1624	0
Flt Permitted			BIENES		0.999			0.984			0.950	
Satd. Flow (perm)	0	1764	0	0	1908	0	0	1785	0	0	1624	0
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		580			289			323			292	
Travel Time (s)		15.8			7.9			8.8			8.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	4%	0%	33%	2%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	136	2	3	112	0	1	1	1	1	0	0
Shared Lane Traffic (%)		II SASSAY										
Lane Group Flow (vph)	0	139	0	0	115	0	0	3	0	0	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00	1.14	1.14	1.14
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop		g ar (Stop			Stop			Stop	
Intersection Summary	THE STATE OF	3 July 18	(D)		w ya jir	all the E		JIH JA	80 E P			
Market Street Control of the Control	Other))) -								
Control Type: Unsignalized	47 00/			I.C.	CU Level	of Contino						
Intersection Capacity Utilizati	011 17.3%			I	O LEVEL	DI OGIVICO	, 11					

Strafford Avenue Residential - Townhouses Existing 2023 AM Peak Hour Traffic Volumes 10:53 am 05/06/2023 BaselineSynchro 11 Report Page 6

Intersection		5.00	i - 17	a 17 ET		II awagin	5 Egg #		ALLE WAY			
Intersection Delay, s/veh	8.1											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	122	2	3	101	0	1	1	1-1-	1	0	
Future Vol, veh/h	1	122	2	3	101	0	1	1	1	1	0	(
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	0	4	0	33	2	0	0	0	0	0	0	(
Mvmt Flow	1	136	2	3	112	0	1	. 1	1	1	0	(
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB	VI EI E	IK-BIT	WB	Hin. Ew	Sai vii i	NB		1000	SB		e ig
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	- 4			-1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.8			8.4			7.4			7.7		
HCM LOS	Α			A			Α			A		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	' 1 - ×,			276	180	10	-040
Vol Left, %		33%	1%	3%	100%							
Vol Thru, %		33%	98%	97%	0%							
Vol Right, %		33%	2%	0%	0%							
Sign Control	WIN I	Stop	Stop	Stop	Stop							
Traffic Vol by Lane		3	125	104	1							
LT Vol		1	1	3	1							
Through Vol		1	122	101	0							
RT Vol		1	2	0	0							
Lane Flow Rate		3	139	116	1							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.004	0.154	0.147	0.001							
Departure Headway (Hd)		4.341	3.986	4.578	4.679						0	
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		829	897	783	769							
Service Time		2.341	2.024	2.606	2.679							
HCM Lane V/C Ratio		0.004	0.155	0.148	0.001							
HCM Control Delay		7.4	7.8	8.4	7.7							
HCM Lane LOS		Α	Α	A	A							
		0	0.5	0.5	0							

	٨	→	*	•	-	*	1	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	33	107	32	25	116	25	32	208	26	11	295	31
Future Volume (vph)	33	107	32	25	116	25	32	208	26	11	295	31
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	14	14	14	16	16	16	11	11	11
Grade (%)		-2%	The T		-1%			0%			-5%	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975			0.980			0.987			0.987	- 27
Flt Protected		0.990			0.993			0.994			0.998	
Satd. Flow (prot)	0	1696	0	0	1854	0	0	1978	0	0	1751	0
Flt Permitted		0.918			0.941			0.940			0.989	
Satd. Flow (perm)	0	1573	0	0	1757	0	0	1871	0	0	1736	0
Right Turn on Red	U	1010	No		1101	Yes		1011	Yes			Yes
Satd. Flow (RTOR)			140		15	100		13			13	
		25			25			25			25	
Link Speed (mph)		2785			863			613			617	00.10
Link Distance (ft)		76.0			23.5			16.7			16.8	
Travel Time (s)	0.05		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	0.95			1%	4%	0.93	1%	4%	9%	0.55	0.00
Heavy Vehicles (%)	0%	0%	0%	0%		26	34	219	27	12	311	33
Adj. Flow (vph)	35	113	34	26	122	20	34	219	21	12	JII	JJ
Shared Lane Traffic (%)		100	•		474	0	0	000	0	0	356	0
Lane Group Flow (vph)	0	182	0	0	174	0	0	280	No	No	No	No
Enter Blocked Intersection	No	No	No	No	No	No	No	No				
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								2.04	0.04	4.00	4.00	4.00
Headway Factor	1.11	1.11	1.11	0.98	0.98	0.98	0.91	0.91	0.91	1.08	1.08	1.08
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2		1	2	-
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	40		20	40		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	40		20	40		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)								94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		FILE OF	8			2			6	
				8			2			6		

	•	→	•	•	-	•	1	1	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	3.0	3.0		3.0	3.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Total Split (s)	25.0	25.0		25.0	25.0		37.0	37.0		37.0	37.0	
Total Split (%)	40.3%	40.3%		40.3%	40.3%		59.7%	59.7%		59.7%	59.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		32.0	32.0		32.0	32.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?	7											
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)		12.2			12.0			35.0			35.0	
Actuated g/C Ratio	10 10 10	0.24			0.23			0.68			0.68	
v/c Ratio		0.49			0.41			0.22			0.30	
Control Delay		22.3			18.7			5.5			6.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		22.3			18.7			5.5			6.1	
LOS		С			В			Α			Α	
Approach Delay		22.3			18.7			5.5			6.1	
Approach LOS		С			В			Α			Α	
Intersection Summary	pil Jayes			7	mx"= INY	135,58	وز الناس	MARIN S		Montain		10,1
Area Type:	Other											
Cycle Length: 62										n'n de		
Actuated Cycle Length: 51	1.1											
Natural Cycle: 40										N		
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.49									William St.			
Intersection Signal Delay:	11.1				ntersection							
Intersection Capacity Utili:	zation 49.7%				CU Level	of Service	e A					
Analysis Period (min) 15												
Splits and Phases: 1: N	Wayne Ave	& Eagle F	Rd									
* 70							♣ Ø4					
Ø2						0	5-2					
1							4_					
▼ Ø6							₹ Ø8					

1:	Ν	Wayne	Ave	&	Eagle	Rd
4				_		

	۶	→	*	1	+	4	1	†	1	-		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	33	107	32	25	116	25	32	208	26	11	295	31
Future Volume (veh/h)	33	107	32	25	116	25	32	208	26	11	295	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1875	1875	1911	1896	1852	1872	1857	1814	1858	1986	1986
Adj Flow Rate, veh/h	35	113	34	26	122	26	34	219	27	12	311	33
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	1	4	0	1	4	9	0	0
Cap, veh/h	126	198	54	113	226	45	164	968	112	89	1171	121
Arrive On Green	0.14	0.16	0.14	0.14	0.16	0.14	0.65	0.67	0.65	0.65	0.67	0.65
Sat Flow, veh/h	235	1201	330	173	1370	271	122	1440	167	20	1742	180
Grp Volume(v), veh/h	182	0	0	174	0	0	280	0	0	356	0	0
Grp Sat Flow(s),veh/h/ln	1765	0	0	1813	0	0	1729	0	0	1941	0	0
Q Serve(g_s), s	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.6	0.0	0.0	4.3	0.0	0.0	3.0	0.0	0.0	3.6	0.0	0.0
Prop In Lane	0.19		0.19	0.15		0.15	0.12		0.10	0.03		0.09
Lane Grp Cap(c), veh/h	342	0	0	346	0	0	1209	0	0	1341	0	0
V/C Ratio(X)	0.53	0.00	0.00	0.50	0.00	0.00	0.23	0.00	0.00	0.27	0.00	0.00
Avail Cap(c_a), veh/h	778	0	0	798	0	0	1209	0	0	1341	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.2	0.0	0.0	19.1	0.0	0.0	3.2	0.0	0.0	3.3	0.0	0.0
Incr Delay (d2), s/veh	1.3	0.0	0.0	1.1	0.0	0.0	0.4	0.0	0.0	0.5	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.5	0.0	0.0	3.3	0.0	0.0	1.5	0.0	0.0	1.9	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.5	0.0	0.0	20.2	0.0	0.0	3.6	0.0	0.0	3.7	0.0	0.0
LnGrp LOS	С	Α	Α	С	Α	Α	Α	Α	Α	Α	Α	Α
Approach Vol, veh/h	all and	182	1 1100	THE ST	174		341	280	Visit, II		356	
Approach Delay, s/veh		20.5			20.2			3.6			3.7	
Approach LOS		С	A D		С			Α			Α	
Timer - Assigned Phs	W.S.	2	The same	4	10 ₇ 1	6		8	4.48	DU SIY	i Baruni	
Phs Duration (G+Y+Rc), s	1810	37.0	4.44	12.1	XII A I	37.0		12.1				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		32.0		20.0		32.0		20.0				
Max Q Clear Time (g_c+l1), s		5.0		6.6		5.6		6.3				
Green Ext Time (p_c), s		1.9		0.5		2.4		0.5				
Intersection Summary	S. Carlo	" 3		and C	100 E	Territoria		wall "wil	RE 11	an pite		audi E
HCM 6th Ctrl Delay		nw/	9.7									
HCM 6th LOS			Α									

	1	-	*	•	-	4	4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	39	83	13	18	103	42	16	74	27	53	38	54
Future Volume (vph)	39	83	1	18	103	42	16	74	27	53	38	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	13	13	13	12	12	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.965			0.969			0.950	
Flt Protected		0.985			0.995			0.993			0.982	
Satd. Flow (prot)	0	1807	0	0	1752	0	0	1889	0	0	1773	(
Flt Permitted		0.985			0.995			0.993			0.982	
Satd. Flow (perm)	0	1807	0	0	1752	0	0	1889	0	0	1773	(
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		586			2785			417			648	
Travel Time (s)		16.0			76.0			11.4			17.7	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	45	97	1	21	120	49	19	86	31	62	44	63
Shared Lane Traffic (%)											THE RES	
Lane Group Flow (vph)	0	143	0	0	190	0	0	136	0	0	169	(
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		(
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary	NEW WE		6 THE TH		10 Jak	iber 2	y) — ±	- 1			0. 800 _{No. 1}	1
	ther											
Control Type: Unsignalized Intersection Capacity Utilizati Analysis Period (min) 15	on 35.9%			IC	CU Level	of Service	А					

						11 11 10		VI				. 18
Intersection		1000	U.S. AST		i i i i i i i i i i i i i i i i i i i			0.107.11		1000	175-8	
Intersection Delay, s/veh	9.1											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	39	83	1	18	103	42	16	74	27	53	38	54
Future Vol, veh/h	39	83	1	18	103	42	16	74	27	53	38	54
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	1	0	0	0	0	0	0	(
Mymt Flow	45	97	1	21	120	49	19	86	31	62	44	63
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB		8851111111	WB	ME SUL	, T. 11-1	NB	IIII Y	140	SB	18 III 8	11 7 12
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	100010			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1	200		1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1		100	1			1		
HCM Control Delay	9.2			9.3			8.9			9.1		
HCM LOS	Â			Α			A			A		
Lane	yn iky	NBLn1	EBLn1	WBLn1	SBLn1		714/2 "	100	HE .			JI X
Vol Left, %		14%	32%	11%	37%							
Vol Thru, %		63%	67%	63%	26%							
Vol Right, %		23%	1%	26%	37%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		117	123	163	145							
LT Vol		16	39	18	53							
Through Vol		74	83	103	38							
RT Vol		27	1	42	54							
Lane Flow Rate		136	143	190	169							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.181	0.195	0.246	0.221							
Departure Headway (Hd)	J. 182	4.793	4.915	4.673	4.714							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		743	725	764	757							
Service Time		2.856	2.977	2.731	2.773							
HCM Lane V/C Ratio		0.183	0.197	0.249	0.223							
HCM Control Delay		8.9	9.2	9.3	9.1							
HCM Lane LOS		A	Α	A	Α							
HCM 95th-tile Q		0.7	0.7	1	8.0							

	≯	>	7	1	4	•	1	Ť		-	¥	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		4			4			4			4	
raffic Volume (vph)	- 1	139	1	1	154	2	⊆ ∋v_1×	0	1	0	0	1
uture Volume (vph)	1	139	1	1	154	2	1	0	1	0	0	1
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
ane Width (ft)	11	11	11	13	13	13	12	12	12	9	9	g
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-irt		0.999			0.999			0.932			0.865	
It Protected								0.976				
Satd. Flow (prot)	0	1835	0	0	1961	0	0	1728	0	0	1479	C
It Permitted								0.976				
Satd. Flow (perm)	0	1835	0	0	1961	0	0	1728	0	0	1479	C
ink Speed (mph)		25			25			25			25	
ink Distance (ft)		580			289			323			292	
Fravel Time (s)		15.8			7.9			8.8			8.0	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
leavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	167	1	1	186	2	1	0	1	0	0	1
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	169	0	0	189	0	0	2	0	0	1	(
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
ane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		0			0			0			0	
ink Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00	1.14	1.14	1.14
Furning Speed (mph)	15		9	15		9	15		9	15		Ç
Sign Control		Stop			Stop			Stop			Stop	
ntersection Summary	WWW.	ileii, g		a Dr. A			(N)					
	ther											
Control Type: Unsignalized					CU Level							

Intersection	What is	June Se		. B.T. 19	877.8	HEAT IN	T" A - T	TRID -	w in the			
Intersection Delay, s/veh	8											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	LUL	4	LUI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	43-		7000	4	1000		4	
Traffic Vol, veh/h	4.	139	1	1	154	2	1	0	1	0	0	
Future Vol, veh/h	1	139	1	1	154	2	1	0	1	0	0	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	0.03	0.00	0.00	0.00	0.00	0	0	0	0	0	0	(
Mymt Flow	1	167	1	1	186	2	1	0	1	0	0	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
	EB		,	WB		IZWIIOCII	NB	W.	e bio		SB	HISTORY
Approach				EB	A HES		SB	III SIKO	MANIES		NB	
Opposing Approach	WB	- Va					1				1	
Opposing Lanes	1			1			EB				WB	
Conflicting Approach Left	SB			NB			1				1	
Conflicting Lanes Left	1			1	W. D. C.		WB	10 16			EB	
Conflicting Approach Right	NB			SB			1				1	
Conflicting Lanes Right	1			1							7.1	
HCM Control Delay	8			8.1			7.5 A		-		Α.	-
HCM LOS	Α			Α			A					
Lane	B	NBLn1	EBLn1	WBLn1	SBLn1	11,200	Jani va	or to	21 F. S.	ALS ESTIN	, Lucia	881
Vol Left, %		50%	1%	1%	0%							
Vol Thru, %	12000	0%	99%	98%	0%	V 100						
Vol Right, %		50%	1%	1%	100%							
Sign Control		Stop	Stop	Stop	Stop			- E'C				
Traffic Vol by Lane		2	141	157	1							
LT Vol	SALE VAN	1	1	1	0							
Through Vol		0	139	154	0							
RT Vol		1	1	2	1							
Lane Flow Rate		2	170	189	1							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.003	0.191	0.211	0.001							
Departure Headway (Hd)		4.46	4.043	4.025	4.059							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap Cap		807	885	889	887							
Service Time		2.46	2.081	2.061	2.059							
HCM Lane V/C Ratio		0.002	0.192	0.213	0.001		in a					
HCM Control Delay		7.5	8	8.1	7.1							
		A	A	A	A							
HCM Lane LOS												

	۶	-	*	•	-	4	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Volume (vph)	12	93	25	20	90	17	19	160	14	25	333	36
Future Volume (vph)	12	93	25	20	90	17	19	160	14	25	333	36
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	14	14	14	16	16	16	11	11	11
Grade (%)		-2%			-1%			0%			-5%	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt Hall Barrier	11. No. 17.	0.974	80 N. II		0.982		1	0.990			0.988	
Flt Protected		0.995			0.992			0.995			0.997	
Satd. Flow (prot)	0	1691	0	0	1784	0	0	1977	0	0	1695	0
Flt Permitted	WILL SE	0.969			0.947			0.952			0.978	
Satd. Flow (perm)	0	1647	0	0	1703	0	0	1891	0	0	1663	0
Right Turn on Red	U	1047	No		1100	Yes			Yes			Yes
Satd. Flow (RTOR)			110		13			10	7 14 11		12	
		25			25			25			25	
Link Speed (mph)		2785			863			613			617	
Link Distance (ft)		76.0			23.5			16.7			16.8	
Travel Time (s)	0.00	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0.92			20%	2%	6%	0.92	2%	0.32	4%	4%	0.02
Heavy Vehicles (%)	0%	1%	0%				21	174	15	27	362	39
Adj. Flow (vph)	13	101	27	22	98	18	21	174	10	21	302	00
Shared Lane Traffic (%)					400	0	0	040	Δ.	0	428	0
Lane Group Flow (vph)	0	141	0	0	138	0	0	210	0	No	No	No
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No			
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0		-	0			0	
Link Offset(ft)		0			0	4 4		0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					14			OVER 1	Transfer of		4.00	4.00
Headway Factor	1.11	1.11	1.11	0.98	0.98	0.98	0.91	0.91	0.91	1.08	1.08	1.08
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	1		1	1		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	11774
Leading Detector (ft)	20	40		20	40		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	40		20	40		20	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)				UV				94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)								0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	4		7 - 5	8			2			6	
Permitted Phases	4			8	-		2			6		
Fellillicu Filases	4			U								

	•	-	*	•	←	*	1	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	3.0	3.0		3.0	3.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Total Split (s)	25.0	25.0		25.0	25.0		37.0	37.0		37.0	37.0	
Total Split (%)	40.3%	40.3%		40.3%	40.3%		59.7%	59.7%		59.7%	59.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		32.0	32.0		32.0	32.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	- 1
Act Effct Green (s)		10.7			10.6			36.9			36.9	
Actuated g/C Ratio		0.20			0.20			0.70			0.70	
v/c Ratio		0.42			0.39			0.16			0.37	
Control Delay		21.8			19.2			4.4			5.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		21.8			19.2			4.4			5.8	
LOS		С			В			Α			Α	
Approach Delay		21.8			19.2			4.4			5.8	
Approach LOS		С			В			Α			Α	
Intersection Summary	12 18 1	, = 1,5%	WE S	2 Pauls	1 35	9.893		71			i i i i i i i i i i i i i i i i i i i	
Area Type:	Other											
Cycle Length: 62												
Actuated Cycle Length: 52	2.5											
Natural Cycle: 40												
Control Type: Actuated-U	ncoordinated	t										
Maximum v/c Ratio: 0.42									- F			
Intersection Signal Delay:					ntersectio							
Intersection Capacity Utili:	zation 44.8%			TELLIS I	CU Level	of Servic	e A					
Analysis Period (min) 15												
Splits and Phases: 1: N	Wayne Ave	& Eagle F	₹d		-							
-a 4							♣ 04					
Ø2							E T					
1							4-					
▼ Ø6							* Ø8					

1:1	NΙ	Nayne	Ave	&	Eagle	Rd
-----	----	-------	-----	---	-------	----

1. IV VVayille 7. IV e al 2.	۶	-	*	•	+	4	1	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	12	93	25	20	90	17	19	160	14	25	333	36
Future Volume (veh/h)	12	93	25	20	90	17	19	160	14	25	333	36
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1860	1875	1615	1881	1822	1872	1843	1872	1929	1929	1986
Adj Flow Rate, veh/h	13	101	27	22	98	18	21	174	15	27	362	39
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	0	1	0	20	2	6	0	2	0	4	4	0
Cap, veh/h	96	189	48	114	194	33	145	1053	86	114	1141	118
Arrive On Green	0.12	0.14	0.12	0.12	0.14	0.12	0.67	0.69	0.67	0.67	0.69	0.67
Sat Flow, veh/h	97	1341	341	191	1371	234	91	1524	124	49	1651	170
Grp Volume(v), veh/h	141	0	0	138	0	0	210	0	0	428	0	0
Grp Sat Flow(s),veh/h/ln	1778	0	0	1797	0	0	1739	0	0	1871	0	0
Q Serve(g_s), s	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	3.5	0.0	0.0	3.4	0.0	0.0	2.0	0.0	0.0	4.4	0.0	0.0
Prop In Lane	0.09		0.19	0.16		0.13	0.10		0.07	0.06		0.09
Lane Grp Cap(c), veh/h	296	0	0	304	0	0	1248	0	0	1334	0	0
V/C Ratio(X)	0.48	0.00	0.00	0.45	0.00	0.00	0.17	0.00	0.00	0.32	0.00	0.00
Avail Cap(c_a), veh/h	812	0	0	814	0	0	1248	0	0	1334	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	19.3	0.0	0.0	19.2	0.0	0.0	2.6	0.0	0.0	3.0	0.0	0.0
Incr Delay (d2), s/veh	1.2	0.0	0.0	1.1	0.0	0.0	0.3	0.0	0.0	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.7	0.0	0.0	2.6	0.0	0.0	0.9	0.0	0.0	2.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.4	0.0	0.0	20.2	0.0	0.0	2.9	0.0	0.0	3.6	0.0	0.0
LnGrp LOS	С	Α	A	С	A	Α	A	A	A	A	A	A
Approach Vol, veh/h		141			138			210			428	
Approach Delay, s/veh		20.4			20.2			2.9			3.6	
Approach LOS		С			С			Α			Α	
Timer - Assigned Phs		2	Time!	4		6	10.00	8	Wat Iv			250
Phs Duration (G+Y+Rc), s		37.0		10.7		37.0		10.7				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		32.0		20.0		32.0		20.0				
Max Q Clear Time (g_c+l1), s		4.0		5.5		6.4		5.4				
Green Ext Time (p_c), s		1.4	.i., T	0.4		3.0		0.4				
Intersection Summary	201			v fi	1/18		" n ""		2-11			t on E
HCM 6th Ctrl Delay			8.5									
HCM 6th LOS			Α									

	1	-	*	•	←	*	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	34	49	8	29	82	24	4	48	20	46	49	37
Future Volume (vph)	34	49	8	29	82	24	4	48	20	46	49	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	13	13	13	12	12	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988			0.976			0.962			0.962	
Flt Protected		0.982			0.989			0.997			0.983	
Satd. Flow (prot)	0	1762	0	0	1731	0	0	1883	0	0	1725	(
FIt Permitted		0.982			0.989			0.997			0.983	
Satd. Flow (perm)	0	1762	0	0	1731	0	0	1883	0	0	1725	(
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		586			2785			417			281	
Travel Time (s)		16.0			76.0			11.4			7.7	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles (%)	3%	0%	0%	3%	0%	10%	0%	0%	0%	5%	2%	6%
Adj. Flow (vph)	37	54	9	32	90	26	4	53	22	51	54	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	100	0	0	148	0	0	79	0	0	146	(
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												1000
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15	- 20	
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary			was in	72017			8		wiks:	681	VE MIN	35-41
Area Type: C	Other											
Control Type: Unsignalized												
Intersection Capacity Utilizati	on 29.2%			10	CU Level	of Service	eΑ					

Intersection	3 D	U 575-00	- St. 11-2	The same	77.11	We had a	- S 100	10				
Intersection Delay, s/veh	8.5											
Intersection LOS	A								uji a			
Intersection 200												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	34	49	8	29	82	24	4	48	20	46	49	37
Future Vol, veh/h	34	49	8	29	82	24	4	48	20	46	49	37
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Heavy Vehicles, %	3	0	0	3	0	10	0	0	0	5	2	(
Mymt Flow	37	54	9	32	90	26	4	53	22	51	54	4
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB	M Him Bu	elevii v	WB		TH WEST	NB	- Nr -	War I	SB		-
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1		The state of	1			1			12		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			15 41		
HCM Control Delay	8.4			8.6			8			8.6		
HCM LOS	Α			A			A			Α		
V0.520002-5-												
Lane		NBLn1	EBLn1	WBLn1	SBLn1	4	11	3818	18 W			
Vol Left, %		6%	37%	21%	35%							
Vol Thru, %		67%	54%	61%	37%							
Vol Right, %		28%	9%	18%	28%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		72	91	135	132							
LT Vol		. 4	34	29	46							
Through Vol		48	49	82	49							
RT Vol		20	8	24	37							
Lane Flow Rate		79	100	148	145							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.099	0.13	0.186	0.184							
Departure Headway (Hd)		4.495	4.664	4.525	4.558							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		796	768	792	788							
Service Time		2.529	2.697	2.556	2.587							
HCM Lane V/C Ratio		0.099	0.13	0.187	0.184							
HCM Control Delay		8	8.4	8.6	8.6							
HCM Lane LOS		Α	A	Α	A							
HCM 95th-tile Q		0.3	0.4	0.7	0.7							

	≯	-	*	1	-	4	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Traffic Volume (vph)	1 1	124	2	3	108	0	1	1	1	1	0	0
Future Volume (vph)	1	124	2	3	108	0	1	1	1	1	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	13	13	13	12	12	12	9	9	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998						0.955				
Flt Protected		200			0.999			0.984			0.950	
Satd. Flow (prot)	0	1764	0	0	1909	0	0	1785	0	0	1624	0
Flt Permitted					0.999			0.984			0.950	
Satd. Flow (perm)	0	1764	0	0	1909	0	0	1785	0	0	1624	0
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		580			289			323			292	
Travel Time (s)		15.8			7.9			8.8			8.0	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	4%	0%	33%	2%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	138	2	3	120	0	1	1	1	1	0	0
Shared Lane Traffic (%)			XVIII									
Lane Group Flow (vph)	0	141	0	0	123	0	0	3	0	0	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	W 55		0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00	1.14	1.14	1.14
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop	100		Stop	
Intersection Summary			No.	3v 49	موالين	TE W	15 N 1	l and Syl		No. House	N _M TD D	
Area Type: Control Type: Unsignalized	Other											

Analysis Period (min) 15

Intersection		**************************************					1000	50		1000		25.0
Intersection Delay, s/veh	8.1											
Intersection LOS	A											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	124	2	3	108	0	1	1	1	- 1	0	(
Future Vol, veh/h	1	124	2	3	108	0	1	1	1	1	0	(
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	0	4	0	33	2	0	0	0	0	0	0	(
Mymt Flow	1	138	2	3	120	0	1	1	1	1	0	= (
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB		1, 150 m	WB	E JAKE	7.25 JUSP	NB			SB	्राहे द्या	n dy
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1.		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	- 1			1			1			1		
HCM Control Delay	7.8			8.5			7.4			7.7		
HCM LOS	Α			Α			Α			Α		
			***************************************	III ON THE COLUMN TO THE COLUM	THOSE WILLIAM							- S
Lane	11 //8	NBLn1	EBLn1	WBLn1	SBLn1		MILE S			100	100	
Vol Left, %		33%	1%	3%	100%							
Vol Thru, %		33%	98%	97%	0%							
Vol Right, %		33%	2%	0%	0%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		3	127	111	1							
LT Vol		1	1	3	1							
Through Vol		1	124	108	0							
RT Vol		1	2	0	0							
Lane Flow Rate		3	141	123	1							
Geometry Grp		<u> </u>	1	1	on - 1							
Degree of Util (X)		0.004	0.156	0.157	0.001							
Departure Headway (Hd)		4.363	3.992	4.579	4.702							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		825	895	783	766							
Service Time		2.363	2.033	2.607	2.702							
HCM Lane V/C Ratio		0.004	0.158	0.157	0.001							
HCM Control Delay		7.4	7.8	8.5	7.7							
HCM Lane LOS		A	A	A	A							
HCM 95th-tile Q		0	0.6	0.6	0							

	٠	7	1	†	+	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	1
Lane Configurations	M			र्स	1>		
Traffic Volume (vph)	2	5	1	105	1	122	ľ
Future Volume (vph)	2	5	1	105	1	122	
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.899		No.	بالتهيث	0.866		
Flt Protected	0.988						
Satd. Flow (prot)	1688	0	0	1828	1645	0	
Flt Permitted	0.988						
Satd. Flow (perm)	1688	0	0	1828	1645	0	
Link Speed (mph)	30			25	25		
Link Distance (ft)	211			300	68		
Travel Time (s)	4.8			8.2	1.9		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	0%	0%	0%	4%	4%	0%	
Adj. Flow (vph)	2	6	1	117	1	136	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	8	0	0	118	137	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Stop			Free	Free		
Intersection Summary			N-W	1. 1.	4 11 2	Jan 1	W
	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 17.6%			IC	CU Level	of Service A	1
Analysis Period (min) 15							

Intersection	50 J		ji ližej	Marie Marie		nga sil	
Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	s, es, esse je 19. gajest, fijano i 19 astona
Lane Configurations	K.A			4	10		
Traffic Vol, veh/h	2	5	1	105	1	122	
Future Vol, veh/h	2	5	1	105	1	122	
Conflicting Peds, #/hr	0	0	- 0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None		None		None	
Storage Length	0		*		-		
Veh in Median Storage,	# 0	(- (-)	A .	0	0	Ni ore	
Grade, %	0	-	7	0	0	- 5	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	0	0	0	4	4	0	
Mymt Flow	2	6	1	117	1	136	
Major/Minor N	linor2		Najor1	N I	/lajor2	is thi	
Conflicting Flow All	188	69	137	0	2	0	
Stage 1	69						
Stage 2	119	348	-	:*:	¥	:::	
Critical Hdwy	6.4	6.2	4.1				
Critical Hdwy Stg 1	5.4			TO#S		::	
Critical Hdwy Stg 2	5.4	I D A				100	
Follow-up Hdwy	3.5	3.3	2.2	re-	-	5.71	
Pot Cap-1 Maneuver	806	1000	1459	N			
Stage 1	959			8 5 3		47.1	
Stage 2	911		or H	AD.	W AS	3 IF(5)	
Platoon blocked, %					-		
Mov Cap-1 Maneuver	805	1000	1459		- 5		
Mov Cap-2 Maneuver	805	(1 0)	- 1	12	- 6		
Stage 1	958	100	1	16	1.7	14	
Stage 2	911	-	-	7/2	-	021	
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Approach	EB	11, 2V	NB	1 1	SB	NA VIII	
HCM Control Delay, s	8.9		0.1	11	0	1000	
HCM LOS	Α		- 1				
A STATE OF THE STA							and the state of t
Minor Lane/Major Mvmt	3 11 11	NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)	M	1459		935	li G		
HCM Lane V/C Ratio		0.001	-	0.008	- E		
HCM Control Delay (s)		7.5	0	8.9	-		
HCM Lane LOS		Α	Α	Α	- 2	1121	
HCM 95th %tile Q(veh)		0	100	0		141	
com vomo alion)		2.52		- 120			

	•	*	1	†	Ţ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	hateling (i) Films (ii)
Lane Configurations	NA.			ર્સ	ĵ.		
Traffic Volume (vph)	2	5	2	104	127	2 1	
Future Volume (vph)	2	5	2	104	127	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt Same of the Control	0.899				0.999		
Flt Protected	0.988			0.999	7,000,000,000		
Satd. Flow (prot)	1688	0	0	1826	1826	0	
Flt Permitted	0.988		-	0.999	The same of		
Satd. Flow (perm)	1688	0	0	1826	1826	0	
Link Speed (mph)	30			25	25		
Link Distance (ft)	186			281	300		
Travel Time (s)	4.2			7.7	8.2		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Heavy Vehicles (%)	0%	0%	0%	4%	4%	0%	
Adj. Flow (vph)	2	6	2	116	141	1	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	8	0	0	118	142	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	Name of the Owner, which was a state of
Median Width(ft)	12			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane			11-74		- Land	10 m	The state of the s
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15	m, 1,50	171	9	
Sign Control	Stop			Free	Free		
Intersection Summary		10 -50	N Egra	11.00	MINE TO		
Area Type:	Other						
Control Type: Unsignalized	E.W.						
Intersection Capacity Utilizat	tion 17.1%			10	CU Level	of Service A	
Analysis Period (min) 15							

Intersection	d saw	0 M 1			OIL II S	
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N.S.		1.160.6	લ	B	-
Traffic Vol, veh/h	2	5	2	104	127	1
Future Vol, veh/h	2	5	2	104	127	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Otop	None	200		1100	None
Storage Length	0	-	-	-		-
Veh in Median Storage,			JAC I	0	0	
Grade, %	0		1	0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	4	4	0
Mymt Flow	2	6	2	116	141	1
THE PARTY OF THE P	J. J.			. II. IX. S.	Table 1821	
The Art State of the State of t	ne de		(Section 1	T-We	Anto-O	A
	linor2		Major1		/lajor2	
Conflicting Flow All	262	142	142	0	*	0
Stage 1	142				¥	
Stage 2	120	(**)	*	*		:•:
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	-				
Critical Hdwy Stg 2	5.4		-		-	
Follow-up Hdwy	3.5	3.3	2.2	850		:•:
Pot Cap-1 Maneuver	731	911	1453	191	. 5	16
Stage 1	890	(2)				
Stage 2	910		el e	7	7	
Platoon blocked, %				3.5	3	•
Mov Cap-1 Maneuver	730	911	1453		Ů Š	121
Mov Cap-2 Maneuver	730		-	16	-	-
Stage 1	889	1 3		illa yes	-	161
Stage 2	910	-	-	D≥1	~	-
Approach	EB	AL SOT	NB	15. F	SB	S.V.
HCM Control Delay, s	9.3	181	0.1	F 75	0	1 301
HCM LOS	A		2000			
Minor Lane/Major Mvm	III. S	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1453		120 2000		
HCM Lane V/C Ratio		0.002	- W		-	740
HCM Control Delay (s)		7.5	0	9.3	e la la	100
HCM Lane LOS		A	A			22
HCM 95th %tile Q(veh)		0				
TOTAL COULT TOURS OR (VOIT)				1924		

	٨	→	•	•	←	1	4	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43-			4			4			4	
Traffic Volume (vph)	33	112	32	25	123	25	32	208	26	11	295	31
Future Volume (vph)	33	112	32	25	123	25	32	208	26	11	295	31
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	11	11	11	14	14	14	16	16	16	11	11	11
Grade (%)		-2%		11 - 6 - 11	-1%			0%			-5%	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.975	1100		0.981			0.987			0.987	
Flt Protected		0.991			0.993			0.994			0.998	
Satd. Flow (prot)	0	1698	0	0	1856	0	0	1978	0	0	1751	0
Flt Permitted	U	0.918			0.943			0.940			0.989	
Satd. Flow (perm)	0	1573	0	0	1762	0	0	1871	0	0	1736	0
Right Turn on Red	U	1010	No		1102	Yes		1011	Yes			Yes
			110		15	103		13	100		13	
Satd. Flow (RTOR)		25			25			25			25	NO DECEMBER
Link Speed (mph)		2785			863			613			617	Tipe 1 2
Link Distance (ft)					23.5			16.7			16.8	
Travel Time (s)	0.05	76.0	0.05	0.05		0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95			1%	4%	9%	0.93	0.33
Heavy Vehicles (%)	0%	0%	0%	0%	1%	4%	0%		27	12	311	33
Adj. Flow (vph)	35	118	34	26	129	26	34	219	21	12	311	- 33
Shared Lane Traffic (%)					101			000	0	0	256	0
Lane Group Flow (vph)	0	187	0	0	181	0	0	280	0	0	356	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	Married W.
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								Y-0-10	300 77		Augusti.	
Headway Factor	1.11	1.11	1.11	0.98	0.98	0.98	0.91	0.91	0.91	1.08	1.08	1.08
Turning Speed (mph)	15		9	15		9	15		9	15	I ISAM	9
Number of Detectors	1	1		1	1		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	40		20	40		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	40		20	40		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	S. R.					u Artis		94			94	
Detector 2 Size(ft)								6			6	
Detector 2 Type								Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		S 4 (1) 20						0.0	- W		0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
	I CIIII	4		1 61111	8		- Jilli	2			6	
Protected Phases	1	7		8	U		2	_		6		
Permitted Phases	4			ð						U		

	*	→	•	1	•	*	1	Ť	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	Lelle_ II	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	3.0	3.0		3.0	3.0		15.0	15.0		15.0	15.0	
Minimum Split (s)	12.0	12.0		12.0	12.0		20.0	20.0		20.0	20.0	
Total Split (s)	25.0	25.0		25.0	25.0		37.0	37.0		37.0	37.0	
Total Split (%)	40.3%	40.3%		40.3%	40.3%		59.7%	59.7%		59.7%	59.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		32.0	32.0		32.0	32.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		-1.0			-1.0			-1.0			-1.0	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Act Effct Green (s)		12.3			12.2			35.0			35.0	
Actuated g/C Ratio		0.24			0.24			0.68			0.68	
v/c Ratio		0.49			0.42			0.22			0.30	
Control Delay		22.3			18.8			5.5			6.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		22.3			18.8			5.5			6.2	
LOS		С			- B			Α			Α	
Approach Delay		22.3			18.8			5.5			6.2	
Approach LOS		С			В			Α			Α	
Intersection Summary		1 531		A STATE		go topil.	37.31	W 1		17/18	المزارية	
Area Type:	Other					60						
Cycle Length: 62												
Actuated Cycle Length: 51	.2											
Natural Cycle: 40												
Control Type: Actuated-Ur	ncoordinated											
Maximum v/c Ratio: 0.49												
Intersection Signal Delay:	11.3			li	ntersection	LOS: B						
Intersection Capacity Utiliz	zation 50.2%				CU Level o	of Service	e A					
Analysis Period (min) 15												
Splits and Phases: 1: N	Wayne Ave	& Eagle F	Rd									
-4		-					2 Ø4					
Ø2							504					
N. S.							4					
▼ Ø6							Ø8					

	۶	→	*	•	←	*	4	†	1	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	33	112	32	25	123	25	32	208	26	11	295	31
Future Volume (veh/h)	33	112	32	25	123	25	32	208	26	11	295	31
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj (A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	ETITE:	No			No			No			No	
Lanes Open During Work Zor	ne											
Adj Sat Flow, veh/h/ln	1875	1875	1875	1911	1896	1852	1872	1857	1814	1858	1986	1986
Adj Flow Rate, veh/h	35	118	34	26	129	26	34	219	27	12	311	33
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0,95
Percent Heavy Veh, %	0	0	0	0	1	4	0	1	4	9	0	0
Opposing Right Turn Influenc	e Yes			Yes			Yes			Yes		
Cap, veh/h	125	204	54	111	233	44	164	965	112	89	1167	121
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arrive On Green	0.15	0.17	0.15	0.15	0.17	0.15	0.65	0.67	0.65	0.65	0.67	0.65
Unsig. Movement Delay												
Ln Grp Delay, s/veh	20.5	0.0	0.0	20.3	0.0	0.0	3.7	0.0	0.0	3.8	0.0	0.0
Ln Grp LOS	C	A	Α	C	A	A	A	A	Α	Α	A	A
Approach Vol, veh/h		187			181			280			356	
Approach Delay, s/veh		20.5			20.3			3.7			3.8	
Approach LOS		С			С			Α			Α	
Timer:		1	2	3	4	5	6	7	8			-uwf
Assigned Phs			2		4		6		8			
Case No			8.0		8.0		8.0		8.0			
Phs Duration (G+Y+Rc), s			37.0		12.2		37.0		12.2			
Change Period (Y+Rc), s			5.0		5.0		5.0		5.0			
Max Green (Gmax), s			32.0		20.0		32.0		20.0			
Max Allow Headway (MAH), s	1000114		5.5		4.3		5.4		4.3			
Max Q Clear (g_c+l1), s			5.0		6.8		5.7		6.5			
Green Ext Time (g_e), s			1.9		0.5		2.4		0.5			
Prob of Phs Call (p_c)			1.00		0.99		1.00		0.99			
Prob of Max Out (p_x)			0.00		0.00		0.00		0.00			
Left-Turn Movement Data		14.15		04 E		145,000			rendê t	//g_//	,	A
Assigned Mvmt			5		7		1		3			
Mvmt Sat Flow, veh/h			122		227		20		165			
Through Movement Data	THE W	With St	- 180			3 11/2 115			itin "	S weeks		
Assigned Mvmt			2		4		6		8			
Mvmt Sat Flow, veh/h			1440		1220		1742		1390	100		
Right-Turn Movement Data		5"), 51			Y sale	· Sī //"	88612	111111111111111111111111111111111111111	Tank.	5.45	30 N II	10
Assigned Mvmt	150	10.00	12		14	× 5 11 15	16	- N	18			
Mvmt Sat Flow, veh/h			167		322		180		261			
Left Lane Group Data	S SWA	Profit v	WY Fo	JL 8 Y J		500	_H 1488					10°) "81
Assigned Mvmt		0	5	0	7	0	. 1	0	3			
Lane Assignment			L+T+R		L+T+R		L+T+R		L+T+R			

1: N Wayne Ave & Eagle F	₹d								05/11/2023
Lanes in Grp	0	1	0	1	0	1	0	1	
Grp Vol (v), veh/h	0	280	0	187	0	356	0	181	
Grp Sat Flow (s), veh/h/ln	0	1729	0	1769	0	1941	0	1816	
Q Serve Time (g_s), s	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	3.0	0.0	4.8	0.0	3.7	0.0	4.5	
Perm LT Sat Flow (s_l), veh/h/ln	0	1053	0	1251	0	1152	0	1255	0.00 PK = 1 C K
Shared LT Sat Flow (s_sh), veh/h/ln	0	1846	0	1857	0	1983	0	1882	
Perm LT Eff Green (g_p), s	0.0	32.0	0.0	7.2	0.0	32.0	0.0	7.2	
Perm LT Serve Time (g_u), s	0.0	28.3	0.0	2.7	0.0	29.0	0.0	2.5	
Perm LT Q Serve Time (g_ps), s	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
Time to First Blk (g_f), s	0.0	12.6	0.0	2.2	0.0	22.3	0.0	2.6	
Serve Time pre Blk (g_fs), s	0.0	3.0	0.0	2.2	0.0	3.7	0.0	2.6	
Prop LT Inside Lane (P_L)	0.00	0.12	0.00	0.19	0.00	0.03	0.00	0.14	
Lane Grp Cap (c), veh/h	0.00	1206	0	347	0	1337	0	351	US IN THE R. P.
V/C Ratio (X)	0.00	0.23	0.00	0.54	0.00	0.27	0.00	0.52	
Avail Cap (c_a), veh/h	0.00	1206	0.00	777	0.00	1337	0.00	797	
	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
Upstream Filter (I)		3.2		19.2	0.0	3.3	0.0	19.1	
Uniform Delay (d1), s/veh	0.0		0.0	1.3	0.0	0.5	0.0	1.2	
Incr Delay (d2), s/veh	0.0	0.5	0.0			0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	3.8	0.0	20.3	
Control Delay (d), s/veh	0.0	3.7	0.0	20.5	0.0			1.8	
1st-Term Q (Q1), veh/ln	0.0	0.7	0.0	1.9	0.0	0.9	0.0		
2nd-Term Q (Q2), veh/ln	0.0	0.2	0.0	0.1	0.0	0.2	0.0	0.1	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.80	0.00	1.80	0.00	1.80	0.00	1.80	
%ile Back of Q (95%), veh/ln	0.0	1.6	0.0	3.6	0.0	2.0	0.0	3.5	
%ile Storage Ratio (RQ%)	0.00	0.07	0.00	0.03	0.00	0.09	0.00	0.11	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Middle Lane Group Data	1755	TIME!	- 0						
Assigned Mvmt	0	2	0	4	0	6	0	8	
Lane Assignment				5,8	100			Dam's	
Lanes in Grp	0	0	0	0	0	0	0	0	
Grp Vol (v), veh/h	0	0	0	0	0	0	0	0	
Grp Sat Flow (s), veh/h/ln	0	0	0	0	0	0	0	0	
Q Serve Time (g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lane Grp Cap (c), veh/h	0	0	0	0	0	0	0	0	
V/C Ratio (X)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	0	0	0	0	0	0	0	0	
Upstream Filter (I)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

1: N Wayne Ave & Eagle	Rd								05/11/20
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A. Sing ignitive wi
%ile Back of Q Factor (f_B%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data	0 M					1111	21 mil 11		THE WAR SHOW !
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment									
Lanes in Grp	0	0	0	0	0	0	0	0	
Grp Vol (v), veh/h	0	0	0	0	0	0	0	0	
Grp Sat Flow (s), veh/h/ln	0	0	0	0	0	0	0	0	
Q Serve Time (g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PRESIDENCE PROPERTY.
Cycle Q Clear Time (g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Sat Flow (s_R), veh/h/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (g_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P_R)	0.00	0.10	0.00	0.18	0.00	0.09	0.00	0.14	STATE OF STATE
Lane Grp Cap (c), veh/h	0	0	0	0	0	0	0	0	
V/C Ratio (X)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Avail Cap (c_a), veh/h	0	0	0	0	0	0	0	0	
Upstream Filter (I)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Iricr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1st-Term Q (Q1), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2nd-Term Q (Q2), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3rd-Term Q (Q3), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q Factor (f_B%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
%ile Back of Q (95%), veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Storage Ratio (RQ%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
nitial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), veh/h	0	0	0	0	0	0	0	0	
Initial Q Clear Time (tc), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary	7 19 E'si		1.359	Estal	S MESS	Diag at	TO STANKE E		
HCM 6th Ctrl Delay		9.8	< - K _ B	- XV 194	17.70	1 2 2	推出		

Strafford Avenue Residential - Townhouses Future 2028 PM Peak Hour Traffic Volumes 10:53 am 05/06/2023 Baseline Synchro 11 Report Page 5

Α

HCM 6th LOS

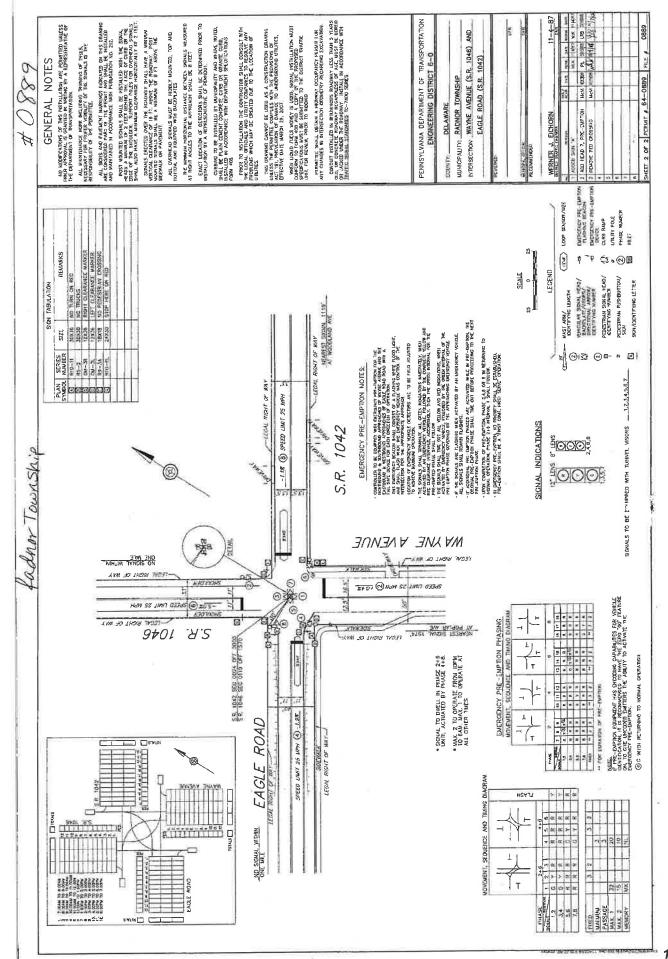
	۶	-	*	1	-	4	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	43	85	1	18	104	47	16	77	28	57	39	57
Future Volume (vph)	43	85	1	18	104	47	16	77	28	57	39	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	11	11	11	13	13	13	12	12	12
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.962			0.969			0.950	
Flt Protected		0.984			0.995			0.993			0.982	
Satd. Flow (prot)	0	1805	0	0	1747	0	0	1889	0	0	1773	0
Flt Permitted		0.984			0.995			0.993			0.982	
Satd. Flow (perm)	0	1805	0	0	1747	0	0	1889	0	0	1773	0
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		586			2785			417			275	
Travel Time (s)		16.0	17 / 200		76.0			11.4			7.5	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles (%)	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	.0%	0%
Adj. Flow (vph)	50	99	1	21	121	55	19	90	33	66	45	66
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	150	0	0	197	0	0	142	0	0	177	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary			1 2 5	441	The sale	Tours	c = a pla	-11 May	18/10-		SIFILIO	
Area Type:	Other											
Control Type: Unsignalized Intersection Capacity Utilizati Analysis Period (min) 15	on 37.8%				CU Level	of Service	A					

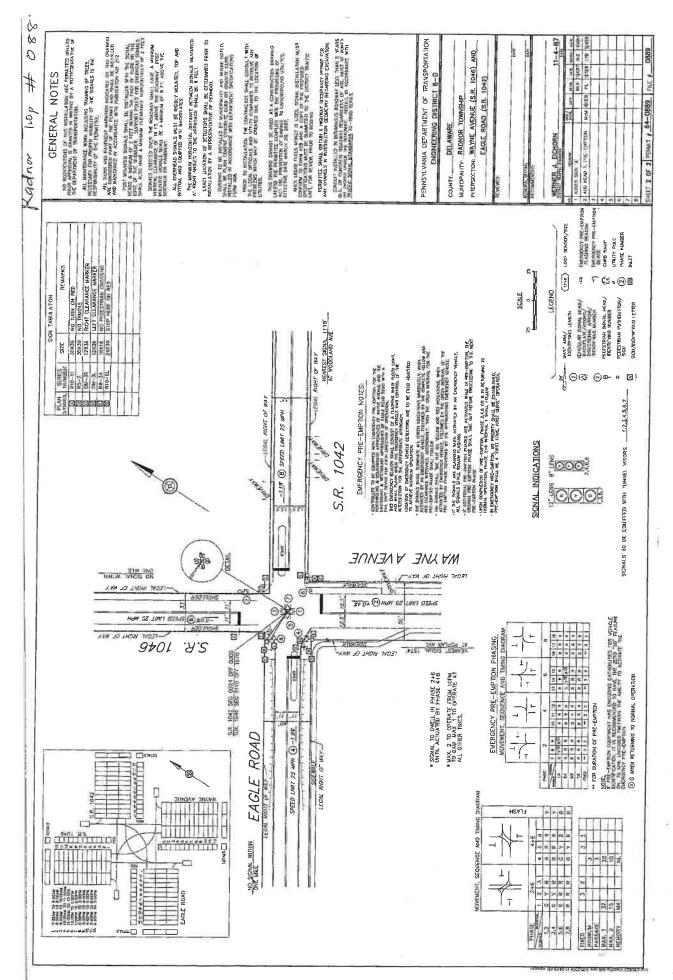
Strafford Avenue Residential - Townhouses Future 2028 PM Peak Hour Traffic Volumes 10:53 am 05/06/2023 Baseline Synchro 11 Report Page 6

Intersection		التبيير عالمي	- 19 11	The second	Wilson	, LIV		100				1
Intersection Delay, s/veh	9.3											
Intersection LOS	A				THE Y							
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	THE STATE OF THE S	4		300 HS + 28 CS	4			44-			4	
Traffic Vol, veh/h	43	85	1	18	104	47	16	77	28	57	39	57
Future Vol, veh/h	43	85	1	18	104	47	16	77	28	57	39	57
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	0	0	0	0	1	0	0	0	0	0	0	(
Mymt Flow	50	99	1	21	121	55	19	90	33	66	45	66
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB	Balling.		WB	11 12 25	6-6	NB		126	SB	Ny m	011
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			- 1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1		F- 11 34	1			1	RIV		1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1		102	1		
HCM Control Delay	9.3			9.4			9.1			9.3		
HCM LOS	Α			Α			Α			A		
Lane	6 60 1	NBLn1	EBLn1	WBLn1	SBLn1		= Why	E dinte		c 151 - 2	Market 1	exteri
Vol Left, %		13%	33%	11%	37%							
Vol Thru, %		64%	66%	62%	25%							
Vol Right, %		23%	1%	28%	37%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		121	129	169	153							
LT Vol		16	43	18	57							
Through Vol		77	85	104	39							
RT Vol		28	1	47	57							
Lane Flow Rate		141	150	197	178							
Geometry Grp		1	7 1	1	1							
Degree of Util (X)		0.189	0.207	0.257	0.235							
Departure Headway (Hd)		4.844	4.965	4.708	4.761							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		734	717	757	749							
Service Time		2.914	3.035	2.773	2.827							
HCM Lane V/C Ratio		0.192	0.209	0.26	0.238							
HCM Control Delay		9.1	9.3	9.4	9.3							
HCM Lane LOS		Α	Α	A	A							
HCM 95th-tile Q		0.7	0.8	1	0.9							

	1	-	•	•	•	*	1	†	1	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	1	146	1	1	159	2	1	0	1	0	0	1
Future Volume (vph)	1	146	1	1	159	2	1	0	1	0	0	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	11	13	13	13	12	12	12	9	9	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.999			0.932			0.865	
Flt Protected								0.976				
Satd. Flow (prot)	0	1835	0	0	1961	0	0	1728	0	0	1479	C
Flt Permitted								0.976				
Satd. Flow (perm)	0	1835	0	0	1961	0	0	1728	0	0	1479	C
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		580			289			323			292	
Travel Time (s)		15.8			7.9			8.8			8.0	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	1	176	1	1	192	2	1	0	1	0	0	1
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	178	0	0	195	0	0	2	0	0	1	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.04	1.04	1.04	0.96	0.96	0.96	1.00	1.00	1.00	1.14	1.14	1.14
Turning Speed (mph)	15		9	15		9	15		9	15		ç
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary	e North		MILO 28	J 97/					Joseph March		ON STV	72")
Area Type: C	Other											
Control Type: Unsignalized												

Strafford Avenue Residential - Townhouses Future 2028 PM Peak Hour Traffic Volumes 10:53 am 05/06/2023 Baseline Synchro 11 Report Page 8


Intersection				R'Ann's								
Intersection Delay, s/veh	8.1											
Intersection LOS	Α											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4		10/00/02	4	F100 H 100 P		4			4	
Traffic Vol, veh/h	1	146	1	1	159	2	1	0	- 1	0	0	NE E
Future Vol, veh/h	1	146	1	1	159	2	1	0	1	0	0	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	(
Mymt Flow	1	176	1	1	192	2	1	0	1	0	0	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB	Y T		WB			NB	GRIN.	TWO BITS		SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1				1	
Conflicting Approach Left	SB			NB			EB				WB	
Conflicting Lanes Left	1			1			1 1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	8.1			8.2			7.5				7.1	
HCM LOS	Α			Α			Α				A	
Lane		NBLn1	EBLn1	WBLn1	SBLn1	작[] [] su		-11/2	W 57 1	81216		E -
Vol Left, %		50%	1%	1%	0%							
Vol Thru, %		0%	99%	98%	0%							
Vol Right, %		50%	1%	1%	100%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		2	148	162	1							
LT Vol		1	1	1	0							
Through Vol		0	146	159	0							
RT Vol		1	1	2	SI 31818							
Lane Flow Rate		2	178	195	1							
Geometry Grp		. 1	1	1	1							
Degree of Util (X)		0.003	0.2	0.219	0.001							
Departure Headway (Hd)		4.491	4.047	4.032	4.09							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		802	883	888	880						4,047	
Service Time		2.491	2.088	2.068	2.09							
HCM Lane V/C Ratio		0.002	0.202	0.22	0.001							
HCM Control Delay		7.5	8.1	8.2	7.1							
HCM Lane LOS		Α	Α	A	Α							
HCM 95th-tile Q		0	0.7	0.8	0							


	•	•	4	†	1	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N.			ર્લ	P	
Traffic Volume (vph)	2	3	6	156	148	3
Future Volume (vph)	2	3	6	156	148	3
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.910				0.997	
Flt Protected	0.984			0.998		
Satd. Flow (prot)	1701	0	0	1896	1894	0
Flt Permitted	0.984			0.998		
Satd. Flow (perm)	1701	0	0	1896	1894	0
Link Speed (mph)	25			25	25	
Link Distance (ft)	190			315	58	
Travel Time (s)	5.2			8.6	1.6	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	- 2	4	7	188	178	4
Shared Lane Traffic (%)						
Lane Group Flow (vph)	6	0	0	195	182	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	-		0	0	_
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary		N EVENT N	8 18		II, a gara	MENELV -
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 23.1%			łC	CU Level of	of Service A
Analysis Period (min) 15						

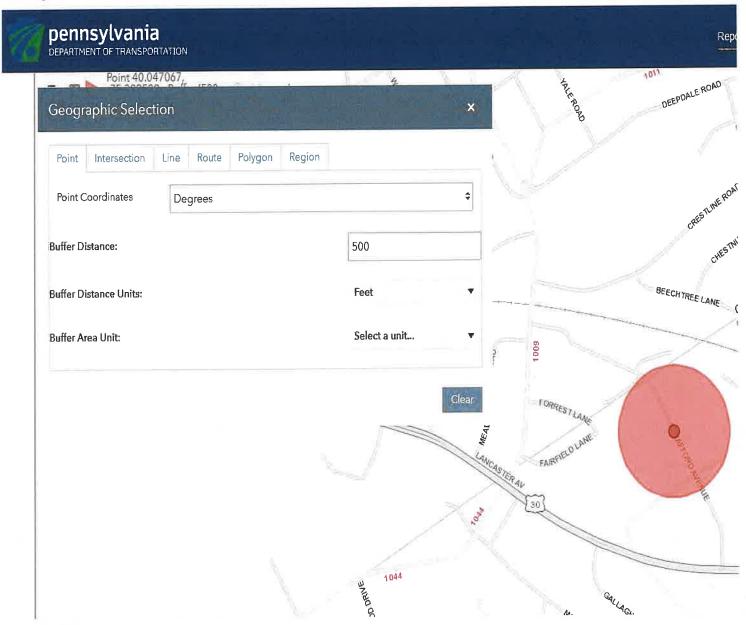
Intersection	E v ii	= 5.8	I Section	N m = 1	100		Francisco WY IV NA SANA FASA
Int Delay, s/veh	0.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			4	13		
Traffic Vol, veh/h	2	3	6	156	148	3	
Future Vol, veh/h	2	3	6	156	148	3	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	mis.		W.	None	Trans.	None	
Storage Length	0	_	- 5		-		
Veh in Median Storage,	# 0	1000	171.5	0	0	6	
Grade, %	0	-	i i	0	0		
Peak Hour Factor	83	83	83	83	83	83	
Heavy Vehicles, %	0	0	0	0	0	0	
Mvmt Flow	2	4	7	188	178	4	
	104.11						
Major/Minor M	inor2	The P	Major1	N	/lajor2	J. Trans	
Conflicting Flow All	382	180	182	0		0	
Stage 1	180			12 No.	W =		
Stage 2	202	:=/	-		-	120	
Critical Hdwy	6.4	6.2	4.3		21.5	11 2	
Critical Hdwy Stg 1	5.4		-	/54	-		
Critical Hdwy Stg 2	5.4	14.			10 g		
Follow-up Hdwy	3	3.1	3	-	-		
Pot Cap-1 Maneuver	710	919	1041	1	5 M -	•	
Stage 1	986	-	-		-		
Stage 2	963		2 1	000		or obs	
Platoon blocked, %				(20	2	*	
Mov Cap-1 Maneuver	704	919	1041		¥,	-	
Mov Cap-2 Maneuver	704	Tella.	-	*	=	-	
Stage 1	978	-				T. West	
Stage 2	963	-	2	140	-		
	rest(te)				3.45		
Approach	EB	, 5V="	NB	1 = g (U)	SB		
HCM Control Delay, s	9.4	100	0.3	10 1	0	g III	
HCM LOS	Α						
EXPENSION STREET							
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)		1041	7.7.6	819	2		
HCM Lane V/C Ratio		0.007	5	0.007	2	-	
HCM Control Delay (s)		8.5	0	9.4		1 -	
HCM Lane LOS		Α	Α	Α	-	140	
HCM 95th %tile Q(veh)		0		0	V III		

	۶	*	1	†	ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			^	^	
Traffic Volume (vph)	- 1	4	6	161	149	2
Future Volume (vph)	1	4	6	161	149	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.887	10.00			0.999	
Flt Protected	0.992			0.998	DEGREE STATE	
Satd. Flow (prot)	1672	0	0	1896	1898	0
Flt Permitted	0.992	2		0.998	(10)11101	
Satd. Flow (perm)	1672	0	0	1896	1898	0
Link Speed (mph)	30			25	25	
Link Distance (ft)	185			275	315	
Travel Time (s)	4.2			7.5	8.6	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	- 1	5	7	194	180	2
Shared Lane Traffic (%)						
Lane Group Flow (vph)	6	0	0	201	182	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	9		0	0	
Link Offset(ft)	0			0	0	ALC: U
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary	nellarite	80,34	547 S. P.	=V == R	5.0	WHAT S
Area Type:	Other					
Control Type: Unsignalized						HUNCH
Intersection Capacity Utiliza	tion 23.3%			IC	CU Level	of Service
Analysis Period (min) 15						

Intersection		Sec. 17				18 ³³ 7 1
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EDE:	LOIN	INDL	↑	A	COIN
		4	6	161	149	2
Traffic Vol, veh/h	1			161	149	2
Future Vol, veh/h	1	4	6	0	149	0
Conflicting Peds, #/hr	0	0	0			Free
Sign Control	Stop	Stop	Free	Free	Free	
RT Channelized		None		None		None
Storage Length	0		Æ	-	-	
Veh in Median Storage,		170		0	0	W . E
Grade, %	0			0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	- 1	5	7	194	180	2
Major/Minor N	/linor2	1	Major1	1M	Major2	0.0
Conflicting Flow All	389	181	182	0	riajonz.	0
	181	101	102	-		
Stage 1						10.54
Stage 2	208	- 0				
Critical Hdwy	6.4	6.2	4.3	1.5	=	
Critical Hdwy Stg 1	5.4					(J. T.)
Critical Hdwy Stg 2	5.4	18	1005		ahu 💆	7,23
Follow-up Hdwy	3	3.1	3			
Pot Cap-1 Maneuver	704	918	1041	-		
Stage 1	985	V e t	. 9		ě.	P.
Stage 2	957	1 3	#		W	. YE
Platoon blocked, %				-	- 4	N#
Mov Cap-1 Maneuver	698	918	1041	V /-		128
Mov Cap-2 Maneuver	698		=	-	~	200
Stage 1	977	(a)		V 643	-	
Stage 2	957	721	- 4	929	-	(41
Netrolescopy	-		NID		OD	
Approach	EB	5 (117)	NB	1 m	SB	
HCM Control Delay, s	9.2		0.3		0	
HCM LOS	Α					
The state of the state of						
Minor Lane/Major Mymi		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1041	-	1,100	. Total	11.
HCM Lane V/C Ratio		0.007		0.007	-	2
HCM Control Delay (s)		8.5		9.2		
HCM Lane LOS		Α.5	-	9.2 A	-	
HCM 95th %tile Q(veh)		0			u gro	

APPENDIX G

Auxiliary Turn Lane Warrants


Turn Lane Warrant and Length Analysis Workbook

			SIS INFORM				3.0		
023	5/11/2		Analysis [Rad	icipality:	Mun	
ranch	FT W.P. Ann		Conducted	_		Delawar	County:		
	WB App		Checked		,	6	District:	ngineering	PennDOT Er
1	FIF	ame:	ency/Company Na	Age					
					Site Driveway	ord Ave & :	scription: Straf	roach Des	ntersection & App
1	.anes:	of Approach	Number o		28	20	s Period:	Analysi	
Undivided	hway:	Divided Hig	Undivided or		k Hour	PM Pea	ign Hour:	-	
	-				nalized			tersection	
e of Analysis ft Turn Lane			1 - 61 51 - 1-4 =			2		peed Limi	Posted S
at ruin taile	iyəiət: Le	irn Lane Ana	Left or Right-Tu	<u> </u>	vei	Le	f Terrain:	Type of	
and surported	NET LIS		TIONS	CALCULA	VOLUME	H By N	U.S. UM	N GE	
A A A A STEEL			lculations	Volume Ca	ft Turn Lane	Le		7544	
173				PCEV	% Trucks	Volume	Include?		Movement
	ancing Volur			6	0.0%	6	Yes	Left	
	posing Volum			166	5.0%	161		Through	Advancing
iie.	ft Turn Volu	Li		N/A N/A	0.0%	0	No	Right	
				153	5.0%	149	No	Left Through	Opposing
ne: 3.49%	ancing Volu	Turns in Ad	% Left	3	0.0%	3	Yes	Right	Opposing
	1009		alculations	e Volume C	ht Turn Lan	Rig		S Mar	
				PCEV	% Trucks	Volume	Include?		Movement
/100				N/A	0.0%	0	No	Left	
	ancing Volui			N/A	0.0%	0		Through	Advancing
ne: N/A	ht Turn Volui	Rig		N/A	0.0%	0		Right	
	Warrant F		FINDINGS Right Applicable W				ne Warrant I		Left Applicable W
indings /A	re: N	arrant Figu				No	Met?:	Warrant P	١
		Varrant Figu	v						- 0.01
/A		Warrant Me	v LCULATIONS	NGTH CA	LANE LE	TURN		1 S X	
/A		Warrant Me		NGTH CA		Unsignalize		tersection	
/A		Warrant Me		NGTH CA			ing Lane:	ne of Turn	Design Hour Volun
/A		Warrant Mo				Unsignalize 6	ing Lane: ssumed):		Design Hour Volun Cycles Pe
/A	t?: N	Warrant Mo	CULATIONS of Vehicles/Cycle whibit 11-6	Average #		Unsignalize 6 60	ing Lane: ssumed):	ne of Turn er Hour (A	Design Hour Volun Cycles Pe
/A	n/A	Warrant Mo	culations of Vehicles/Cycle whibit 11-6 eed (MPH)	Average #	PennDOT Pub	Unsignalize 6 60	ing Lane: ssumed):	ne of Turn er Hour (A	Design Hour Volun Cycles Pe
/A	t?: N	Warrant Mo	CULATIONS of Vehicles/Cycle whibit 11-6	Average filication 46, E	d	Unsignalize 6 60	ing Lane: ssumed):	ne of Turn er Hour (A er Hour (If	Design Hour Volun Cycles Pe
/A	N/A N/A Low	Warrant Me	e of Vehicles/Cycleshibit 11-6 sed (MPH) 40-45 mand Volume Low	Average # lication 46, E Spo Turn De High	PennDOT Pub	Unsignalize 6 60	ing Lane: ssumed): Known):	ne of Turn er Hour (A er Hour (If	Design Hour Volun Cycles Pe
/A	N/A Low BorC	Warrant Me	t of Vehicles/Cycle whibit 11-6 seed (MPH) 40-45 semand Volume Low 8 or C	Average # lication 46, E Spi Turn De High B or C	PennDOT Pub 25-35 Low A	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A	N/A Low B or C B	Warrant Me	e of Vehicles/Cycleshibit 11-6 sed (MPH) 40-45 mand Volume Low	Average # lication 46, E Spo Turn De High	PennDOT Pub 25-35	Unsignalize 6 60 High	ing Lane: ssumed): Known):	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A	N/A Low BorC	Warrant Mo	t of Vehicles/Cycle whibit 11-6 seed (MPH) 40-45 semand Volume Low 8 or C	Average i	PennDOT Pub 25-35 Low A A	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A	N/A Low BorC B	Warrant Me	t of Vehicles/Cycle whibit 11-6 eed (MPH) 40-45 emand Volume Low Bor C B Length, Condition	Average i	PennDOT Pub 25-35 Low A A	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A Feet Feet	N/A Low B or C B N/A N/A	Warrant Me	t of Vehicles/Cycleshibit 11-6 seed (MPH) 40-45 mand Volume Low Bor C B Length, Condition	Average i	PennDOT Pub 25-35 Low A A	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A Feet Feet Feet	N/A Low B or C B N/A N/A N/A	Warrant Me	t of Vehicles/Cycle whibit 11-6 eed (MPH) 40-45 emand Volume Low Bor C B Length, Condition	Average i	PennDOT Pub 25-35 Low A A	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A Feet Feet	N/A Low B or C B N/A N/A	Warrant Me S High B or C B or C ion A:	t of Vehicles/Cycleshibit 11-6 seed (MPH) 40-45 mand Volume Low Bor C B Length, Condition	Average i	PennDOT Pub 25-35 Low A A Left Turn La	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A Feet Feet Feet Feet	N/A Low B or C B N/A N/A N/A	Warrant Me	d of Vehicles/Cycle whibit 11-6 eed (MPH) 40-45 mand Volume Low Bor C B Length, Condition Condition	Average i	PennDOT Pub 25-35 Low A A Left Turn La	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe
/A /A Feet Feet Feet Feet	N/A Low B or C B N/A N/A N/A N/A	Warrant Me	d of Vehicles/Cycle whibit 11-6 eed (MPH) 40-45 mand Volume Low Bor C B Length, Condition Condition	Average i	PennDOT Pub 25-35 Low A A Left Turn La	Unsignalize 6 60 High	ing Lane: ssumed): Known): of Traffic Contro	ne of Turn er Hour (A er Hour (If Type o	Design Hour Volun Cycles Pe

Turn Lane Warrant and Length Analysis Workbook

			,DI LOC	THO IT ALL		SIS INFORMATION	
	Mun	icipality:		Inor		Analysis Date:	5/11/2023
		County:		e County		Conducted By:	FT Approach
PennDOT Eng	gineering	District:		6		Checked By: ency/Company Name:	EB Approach FTA
			20.72				
ntersection & Appro	oach Des	cription: Str	afford Ave &	Site Driveway			
	Analysi	s Period:	20)28		Number of Approa	
		gn Hour:		ak Hour		Undivided or Divided	Highway: Undivided
Inte Posted Sp	ersection	-		nalized 25	-		Type of Analysis
Posteu sp		Terrain:		vel		Left or Right-Turn Lane	The second secon
J. NEWSER I	, g= 112		- 1, [8-7	VOLUME	CALCULA	TIONS	
	- W			eft Turn Lane			
Movement		Include?	Volume	% Trucks	PCEV		
	Left	Yes	0	0.0%	N/A		Advancing Volume: N/A
Advancing T	hrough		0	0.0%	N/A		Opposing Volume: N/A
	Right	No	0	0.0%	N/A		Left Turn Volume: N/A
Opposing	Left hrough	No	0	0.0%	N/A N/A		
	Right	Yes	0	0.0%	N/A	% Left Turns in	Advancing Volume: N/A
		in Sink	Rig	ght Turn Lan	e Volume C	alculations	
Movement		Include?	Volume	% Trucks	PCEV		
	Left	No	0	0.0%	N/A		
	hrough	-	149	5.0%	153 3		Advancing Volume: 156 Right Turn Volume: 3
	Right	×:	3	0.0%			vigir ratii voluliie:
Minesia Siy	15,	V V	TUR	RN LANE W	/ARRANT	FINDINGS	
Left 1	Turn La	ne Warrant	Findings			Right Turn L	ane Warrant Findings
	seen of Fi	gure:	N/A			Applicable Warrant I	igure: Figure 9
Applicable Wa	irrant Fl			1		Warrant	Met?: No
• •	arrant Fi Varrant N	/let?:	N/A	2			
		/let?:		LANE LE	NGTH CA	LCULATIONS	
w	arrant N	Met?:			NGTH CA	LCULATIONS	
W	arrant N	Control:	TURN Unsignalize		NGTH CA	LCULATIONS	
W Inte Design Hour Volume Cycles Per	ersection of Turn	Control: ing Lane: ssumed):	TURN				N/A
W Inte Design Hour Volume	ersection of Turn	Control: ing Lane: ssumed):	TURN Unsignalize 3 60	ed	Average ‡	of Vehicles/Cycle:	N/A
W Inte Design Hour Volume Cycles Per	ersection of Turn	Control: ing Lane: ssumed):	TURN Unsignalize 3 60		Average ‡ lication 46, E	of Vehicles/Cycle:	N/A
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (A:	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60	ed	Average ‡ lication 46, E	of Vehicles/Cycle:	N/A 50-60
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (A:	Control: ing Lane: ssumed):	TURN Unsignalize 3 60	PennDOT Pub	Average ‡ lication 46, E: Spe Turn De	of Vehicles/Cycle: whibit 11-6 sed (MPH) 40-45 mand Volume	50-60
W Inte Design Hour Volume Cycles Per	ersection of Turn Hour (As	Control: ing Lane: issumed): Known):	TURN Unsignalize 3 60 High	ed PennDOT Pub	Average # lication 46, E Spe	of Vehicles/Cycle: whibit 11-6 eed (MPH) 40-45	50-60 Low
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60	PennDOT Pub 25-35	Average # lication 46, E Spe Turn De High	of Vehicles/Cycle: whibit 11-6 eed (MPH) 40-45 mand Volume Low High	50-60 Low B or C
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A	Average # lication 46, E Spe Turn De High B or C	chibit 11-6 sed (MPH) 40-45 mand Volume Low High B or C B or C B B or C	50-60 Low B or C B
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A	Average # lication 46, E Spe Turn De High B or C	t of Vehicles/Cycle: chibit 11-6 ced (MPH) 40-45 cmand Volume Low High B or C B or C B B or C	50-60 Low B or C B N/A Feet
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A	Average # lication 46, E Spe Turn De High B or C	t of Vehicles/Cycle: whibit 11-6 sed (MPH) 40-45 mand Volume Low High B or C B or C B B B or C Condition A: Condition B:	Low B or C B N/A Feet N/A Feet Feet Feet S Feet S Feet S Feet S Feet Fe
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A	Average # lication 46, E Spe Turn De High B or C	t of Vehicles/Cycle: chibit 11-6 ced (MPH) 40-45 cmand Volume Low High B or C B or C B B or C	S0-60 Low B or C B N/A Feet N/A Feet N/A Feet
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A Right Turn La	Average # lication 46, E: Spe Turn De High B or C C ane Storage	t of Vehicles/Cycle: whibit 11-6 sed (MPH) 40-45 mand Volume Low High B or C B or C B B B or C Condition A: Condition B:	Low B or C B N/A Feet N/A Feet Feet Feet S Feet S Feet S Feet S Feet Fe
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A Right Turn La	Average # lication 46, E: Spe Turn De High B or C C ane Storage	d of Vehicles/Cycle: whibit 11-6 red (MPH) 40-45 Immand Volume Low High B or C B or C B B B or C Condition A: Condition B: Condition C: ane Storage Length:	S0-60 Low B or C B N/A Feet N/A Feet N/A Feet Feet Feet Feet
W Inte Design Hour Volume Cycles Per	ersection e of Turn Hour (As	Control: ing Lane: ssumed): Known):	TURN Unsignalize 3 60 High A	PennDOT Pub 25-35 Low A A Right Turn La	Average # lication 46, E: Spe Turn De High B or C C ane Storage	d of Vehicles/Cycle: whibit 11-6 red (MPH) 40-45 Immand Volume Low High B or C B or C B B B or C Condition A: Condition B: Condition C: ane Storage Length:	S0-60 Low B or C B N/A Feet N/A Feet N/A Feet

APPENDIX HAccident Investigations

Disclaimer Notes:

- 1) The information contained in this document is drawn from raw data and should not be interpreted as representing an engineering judgment or determination made by the [
- 2) The data available in this application is dynamic. Data may be added or changed as additional information is made available to the Department

Date Range: 01/01/2017 to 12/31/2022*

															U U		
111 881 1	ALL YEARS		က	4	THE PARTY OF THE	ALL YEARS ES CRASHES	3	_	4		ALL YEARS US PERSONS	0	0	0	-	0	0
	2019 CRASHES	0	-	-	ja Lea	2019 CRASHES	0	-	٠		2019 PERSON	0	0	0	0	0	0
į	2017 2018 CRASHES CRASHES	÷	0	-	AR	2018 CRASHES	-	0	-	IR.	2017 2018 2019 PERSONS PERSONS	0	0	0	-	0	0
Y YEAR	2017 SRASHES	0	2	2	S BY YE	2017 CRASHES	2	0	2	Y BY YEA	2017 PERSONS	0	0	0	0	0	0
CRASH SEVERITY LEVEL BY YEAR		POSSIBLE INJURY	PROPERTY DMG ONLY	TOTAL	CRASH DESCRIPTION TYPES BY YEAR		ANGLE	HEAD ON	TOTAL	PERSON INJURY SUMMARY BY YEAR		FATALITIES	SUSPECTED SERIOUS INJURIES	SUSPECTED MINOR INJURIES	POSSIBLE INJURIES	UNKNOWN SEVERITY	UNKNOWN IF INJURED

IMPORTANT: The information contained in this document is drawn from raw data and should not be interpreted as representing an engineering judgement or determination made by the Department of Transportation as to the type and severity of accidents noted herein.

PCIT - PUBLIC REQUEST / PRESS INQUIRY REPORT (01-07)

^{*} PLEASE NOTE: Years which do not appear in the report contain zero crashes for this request.

^{*} Complete records of reportable crashes are available in PCIT for the following years: 2003 - 2022

^{*} Crash information for 2023 is incomplete at the time of this printing. As such, data for 2023 is not included in this report.

Print Date: 05/10/2023

PCIT - PUBLIC REQUEST / PRESS INQUIRY REPORT (01-07)

NOTES:

1 Injury Severity Disclaimer

Please note that beginning January 1, 2016, PennDOT adopted the Federal standard for collecting injury severity data. The field descriptions and definitions changed from the state standard that had been in use for decades. This resulted in a substantial shift in severity levels. Therefore, comparison of the "Suspected Serious Injury", "Suspected Minor Injury" and "Possible Injury" categories will not be consistent for crashes taking place before versus after the adoption of the new standard.

REPORT PARAMETERS:

Date Range: 01/01/2017 to 12/31/2022

Point 40.047067, -75.399589, Point 40.047067, -75.399589 - Buffer (500 feet) Selected Shapes:

Filter Characteristics:

This report counts the number of crashes.